
P a r t

I
Mac OS X Basics

95363c01.indd 195363c01.indd 1 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

CO
PYRIG

HTED
 M

ATERIA
L

95363c01.indd 295363c01.indd 2 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

3

This chapter begins by addressing many of the basics of a Mac OS X system.
This includes the general architecture and the tools necessary to deal with the
architecture. It then addresses some of the security improvements that come
with version 10.5 “Leopard”, the most recent version of Mac OS X. Many of these
security topics will be discussed in great detail throughout this book.

Basics

Before we dive into the tools, techniques, and security of Mac OS X, we need to
start by discussing how it is put together. To understand the details of Leopard,
you need fi rst to understand how it is built, from the ground up. As depicted
in Figure 1-1, Mac OS X is built as a series of layers, including the XNU kernel
and the Darwin operating system at the bottom, and the Aqua interface and
graphical applications on the top. The important components will be discussed
in the following sections.

C H A P T E R

1

Mac OS X Architecture

95363c01.indd 395363c01.indd 3 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

4 Part I ■ Mac OS X Basics

Applications

GUI

Application Environments

Libraries

Kernel

Firmware

Hardware

Safari, Mail, iCal, etc.

Aqua

BSD, X11, Carbon, Cocoa, AWT, Swing

URL parsing, Networking, Core Audio, HTML rendering, etc.

BSD (signals, sockets, etc.) Mach (virtual memory, IPC, etc.)

EFI

Apple hardware

Figure 1-1: Basic architecture of a Mac OS X system

XNU
The heart of Mac OS X is the XNU kernel. XNU is basically composed of a
Mach core (covered in the next section) with supplementary features provided
by Berkeley Software Distribution (BSD). Additionally, XNU is responsible for
providing an environment for kernel drivers called the I/O Kit. We’ll talk about
each of these in more detail in upcoming sections. XNU is a Darwin package,
so all of the source code is freely available. Therefore, it is completely possible
to install the same kernel used by Mac OS X on any machine with supported
hardware; however, as Figure 1-1 illustrates, there is much more to the user
experience than just the kernel.

From a security researcher’s perspective, Mac OS X feels just like a FreeBSD
box with a pretty windowing system and a large number of custom applications.
For the most part, applications written for BSD will compile and run without
modifi cation on Mac OS X. All the tools you are accustomed to using in BSD are
available in Mac OS X. Nevertheless, the fact that the XNU kernel contains all
the Mach code means that some day, when you have to dig deeper, you’ll fi nd
many differences that may cause you problems and some you may be able to
leverage for your own purposes. We’ll discuss some of these important differ-
ences briefl y; for more detailed coverage of these topics, see Mac OS X Internals:
A Systems Approach (Addison-Wesley, 2006).

Mach
Mach, developed at Carnegie Mellon University by Rick Rashid and Avie Tevanian,
originated as a UNIX-compatible operating system back in 1984. One of its pri-
mary design goals was to be a microkernel; that is, to minimize the amount of
code running in the kernel and allow many typical kernel functions, such as fi le

95363c01.indd 495363c01.indd 4 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 5

system, networking, and I/O, to run as user-level Mach tasks. In earlier Mach-
based UNIX systems, the UNIX layer ran as a server in a separate task. However,
in Mac OS X, Mach and the BSD code run in the same address space.

In XNU, Mach is responsible for many of the low-level operations you expect
from a kernel, such as processor scheduling and multitasking and virtual-
memory management.

BSD
The kernel also involves a large chunk of code derived from the FreeBSD code
base. As mentioned earlier, this code runs as part of the kernel along with Mach
and uses the same address space. The FreeBSD code within XNU may differ
signifi cantly from the original FreeBSD code, as changes had to be made for it
to coexist with Mach. FreeBSD provides many of the remaining operations the
kernel needs, including

 Processes ■

 Signals ■

 Basic security, such as users and groups ■

 System call infrastructure ■

 TCP/IP stack and sockets ■

 Firewall and packet fi ltering ■

To get an idea of just how complicated the interaction between these two sets
of code can be, consider the idea of the fundamental executing unit. In BSD the
fundamental unit is the process. In Mach it is a Mach thread. The disparity is
settled by each BSD-style process being associated with a Mach task consisting
of exactly one Mach thread. When the BSD fork() system call is made, the BSD
code in the kernel uses Mach calls to create a task and thread structure. Also, it
is important to note that both the Mach and BSD layers have different security
models. The Mach security model is based on port rights, and the BSD model is
based on process ownership. Disparities between these two models have resulted
in a number of local privilege-escalation vulnerabilities. Additionally, besides
typical system cells, there are Mach traps that allow user-space programs to
communicate with the kernel.

I/O Kit
I/O Kit is the open-source, object-oriented, device-driver framework in the XNU
kernel and is responsible for the addition and management of dynamically loaded
device drivers. These drivers allow for modular code to be added to the kernel
dynamically for use with different hardware, for example. The available drivers

95363c01.indd 595363c01.indd 5 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

6 Part I ■ Mac OS X Basics

are usually stored in the /System/Library/Extensions/ directory or a subdirectory.
The command kextstat will list all the currently loaded drivers,

$ kextstat

Index Refs Address Size Wired Name (Version) <Linked

Against>

 1 1 0x0 0x0 0x0 com.apple.kernel (9.3.0)

 2 55 0x0 0x0 0x0 com.apple.kpi.bsd (9.3.0)

 3 3 0x0 0x0 0x0 com.apple.kpi.dsep (9.3.0)

 4 74 0x0 0x0 0x0 com.apple.kpi.iokit (9.3.0)

 5 79 0x0 0x0 0x0 com.apple.kpi.libkern

(9.3.0)

 6 72 0x0 0x0 0x0 com.apple.kpi.mach (9.3.0)

 7 39 0x0 0x0 0x0 com.apple.kpi.unsupported

(9.3.0)

 8 1 0x0 0x0 0x0

com.apple.iokit.IONVRAMFamily (9.3.0)

 9 1 0x0 0x0 0x0 com.apple.driver.AppleNMI

(9.3.0)

 10 1 0x0 0x0 0x0

com.apple.iokit.IOSystemManagementFamily (9.3.0)

 11 1 0x0 0x0 0x0

com.apple.iokit.ApplePlatformFamily (9.3.0)

 12 31 0x0 0x0 0x0 com.apple.kernel.6.0 (7.9.9)

 13 1 0x0 0x0 0x0 com.apple.kernel.bsd (7.9.9)

 14 1 0x0 0x0 0x0 com.apple.kernel.iokit

(7.9.9)

 15 1 0x0 0x0 0x0 com.apple.kernel.libkern

(7.9.9)

 16 1 0x0 0x0 0x0 com.apple.kernel.mach

(7.9.9)

 17 17 0x2e2bc000 0x10000 0xf000 com.apple.iokit.IOPCIFamily

(2.4.1) <7 6 5 4>

 18 10 0x2e2d2000 0x4000 0x3000 com.apple.iokit.IOACPIFamily

(1.2.0) <12>

 19 3 0x2e321000 0x3d000 0x3c000

com.apple.driver.AppleACPIPlatform (1.2.1) <18 17 12 7 5 4>

…

Many of the entries in this list say they are loaded at address zero. This just
means they are part of the kernel proper and aren’t really device drivers—i.e.,
they cannot be unloaded. The fi rst actual driver is number 17.

Besides kextstat, there are other functions you’ll need to know for loading
and unloading these drivers. Suppose you wanted to fi nd and load the driver
associated with the MS-DOS fi le system. First you can use the kextfi nd tool to
fi nd the correct driver.

$ kextfind -bundle-id -substring ‘msdos’

/System/Library/Extensions/msdosfs.kext

95363c01.indd 695363c01.indd 6 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 7

Now that you know the name of the kext bundle to load, you can load it into
the running kernel.

$ sudo kextload /System/Library/Extensions/msdosfs.kext

kextload: /System/Library/Extensions/msdosfs.kext loaded successfully

It seemed to load properly. You can verify this and see where it was loaded.

$ kextstat | grep msdos

 126 0 0x346d5000 0xc000 0xb000

com.apple.filesystems.msdosfs (1.5.2) <7 6 5 2>

It is the 126th driver currently loaded. There are zero references to it (not sur-
prising, since it wasn’t loaded before we loaded it). It has been loaded at address
0x346d5000 and has size 0xc000. This driver occupies 0xb000 wired bytes of
kernel memory. Next it lists the driver’s name and version. It also lists the index
of other kernel extensions that this driver refers to—in this case, looking at the
full listing of kextstat, we see it refers to the “unsupported” mach, libkern, and
bsd drivers. Finally, we can unload the driver.

$ sudo kextunload com.apple.filesystems.msdosfs

kextunload: unload kext /System/Library/Extensions/msdosfs.kext

succeeded

Darwin and Friends
A kernel without applications isn’t very useful. That is where Darwin comes
in. Darwin is the non-Aqua, open-source core of Mac OS X. Basically it is all
the parts of Mac OS X for which the source code is available. The code is made
available in the form of a package that is easy to install. There are hundreds of
available Darwin packages, such as X11, GCC, and other GNU tools. Darwin
provides many of the applications you may already use in BSD or Linux for
Mac OS X. Apple has spent signifi cant time integrating these packages into
their operating system so that everything behaves nicely and has a consistent
look and feel when possible.

On the other hand, many familiar pieces of Mac OS X are not open source.
The main missing piece to someone running just the Darwin code will be Aqua,
the Mac OS X windowing and graphical-interface environment. Additionally,
most of the common high-level applications, such as Safari, Mail, QuickTime,
iChat, etc., are not open source (although some of their components are open
source). Interestingly, these closed-source applications often rely on open-
source software, for example, Safari relies on the WebKit project for HTML
and JavaScript rendering. For perhaps this reason, you also typically have
many more symbols in these applications when debugging than you would
in a Windows environment.

95363c01.indd 795363c01.indd 7 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

8 Part I ■ Mac OS X Basics

Tools of the Trade

Many of the standard Linux/BSD tools work on Mac OS X, but not all of them. If
you haven’t already, it is important to install the Xcode package, which contains
the system compiler (gcc) as well as many other tools, like the GNU debugger
gdb. One of the most powerful tools that comes on Mac OS X is the object fi le
displaying tool (otool). This tool fi lls the role of ldd, nm, objdump, and similar
tools from Linux. For example, using otool you can use the –L option to get a
list of the dynamically linked libraries needed by a binary.

$ otool -L /bin/ls

/bin/ls:

/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current

version 5.4.0)

/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version

1.0.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version

111.0.0)

To get a disassembly listing, you can use the –tv option.

$ otool -tv /bin/ps

/bin/ps:

(__TEXT,__text) section

00001bd0 pushl $0x00

00001bd2 movl %esp,%ebp

00001bd4 andl $0xf0,%esp

00001bd7 subl $0x10,%esp

…

You’ll see many references to other uses for otool throughout this book.

Ktrace/DTrace

You must be able to trace execution fl ow for processes. Before Leopard, this
was the job of the ktrace command-line application. ktrace allows kernel trace
logging for the specifi ed process or command. For example, tracing the system
calls of the ls command can be accomplished with

$ ktrace -tc ls

This will create a file called ktrace.out. To read this file, run the kdump
command.

$ kdump

 918 ktrace RET ktrace 0

95363c01.indd 895363c01.indd 8 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 9

 918 ktrace CALL execve(0xbffff73c,0xbffffd14,0xbffffd1c)

 918 ls RET execve 0

 918 ls CALL issetugid

 918 ls RET issetugid 0

 918 ls CALL

__sysctl(0xbffff7cc,0x2,0xbffff7d4,0xbffff7c8,0x8fe45a90,0xa)

 918 ls RET __sysctl 0

 918 ls CALL __sysctl(0xbffff7d4,0x2,0x8fe599bc,0xbffff878,0,0)

 918 ls RET __sysctl 0

 918 ls CALL

__sysctl(0xbffff7cc,0x2,0xbffff7d4,0xbffff7c8,0x8fe45abc,0xd)

 918 ls RET __sysctl 0

 918 ls CALL __sysctl(0xbffff7d4,0x2,0x8fe599b8,0xbffff878,0,0)

 918 ls RET __sysctl 0

…

For more information, see the man page for ktrace.

In Leopard, ktrace is replaced by DTrace. DTrace is a kernel-level tracing
mechanism. Throughout the kernel (and in some frameworks and applications)
are special DTrace probes that can be activated. Instead of being an application
with some command-line arguments, DTrace has an entire language, called
D, to control its actions. DTrace is covered in detail in Chapter 4, “Tracing and
Debugging,” but we present a quick example here as an appetizer.

$ sudo dtrace -n ‘syscall:::entry {@[execname] = count()}’

dtrace: description ‘syscall:::entry ‘ matched 427 probes

^C

 fseventsd 3

 socketfilterfw 3

 mysqld 6

 httpd 8

 pvsnatd 8

 configd 11

 DirectoryServic 14

 Terminal 17

 ntpd 21

 WindowServer 27

 mds 33

 dtrace 38

 llipd 60

 SystemUIServer 69

 launchd 182

 nmblookup 288

 smbclient 386

 Finder 5232

 Mail 5352

95363c01.indd 995363c01.indd 9 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

10 Part I ■ Mac OS X Basics

Here, this one line of D within the DTrace command keeps track of the num-
ber of system calls made by processes until the user hits Ctrl+C. The entire
functionality of ktrace can be replicated with DTrace in just a few lines of D.
Being able to peer inside processes can be very useful when bug hunting or
reverse-engineering, but there will be more on those topics later in the book.

Objective-C

Objective-C is the programming language and runtime for the Cocoa API used
extensively by most applications within Mac OS X. It is a superset of the C
programming language, meaning that any C program will compile with an
Objective-C compiler. The use of Objective-C has implications when applica-
tions are being reverse-engineered and exploited. More time will be spent on
these topics in the corresponding chapters.

One of the most distinctive features of Objective-C is the way object-oriented
programming is handled. Unlike in standard C++, in Objective-C, class meth-
ods are not called directly. Rather, they are sent a message. This architecture
allows for dynamic binding; i.e., the selection of method implementation occurs at
runtime, not at compile time. When a message is sent, a runtime function looks
at the receiver and the method name in the message. It identifi es the receiver’s
implementation of the method by the name and executes that method.

The following small example shows the syntactic differences between C++
and Objective-C from a source-code perspective.

 #include <objc/Object.h>

 @interface Integer : Object

 {

 int integer;

 }

 - (int) integer;

 - (id) integer: (int) _integer;

 @end

Here an interface is defi ned for the class Integer. An interface serves the role
of a declaration. The hyphen character indicates the class’s methods.

 #import “Integer.h”

 @implementation Integer

 - (int) integer

 {

 return integer;

 }

 - (id) integer: (int) _integer

95363c01.indd 1095363c01.indd 10 1/25/09 4:39:27 PM1/25/09 4:39:27 PM

 Chapter 1 ■ Mac OS X Architecture 11

 {

 integer = _integer;

 }

 @end

Objective-C source fi les typically use the .m fi le extension. Within Integer.m
are the implementations of the Integer methods. Also notice how arguments to
functions are represented after a colon. One other small difference with C++ is
that Objective-C provides the import preprocessor, which acts like the include
directive except it includes the fi le only once.

 #import “Integer.h”

 @interface Integer (Display)

 - (id) showint;

 @end

Another example follows.

#include <stdio.h>

#import “Display.h”

 @implementation Integer (Display)

 - (id) showint

 {

 printf(“%d\n”, [self integer]);

 return self;

 }

 @end

In the second fi le, we see the fi rst call of an object’s method. [self integer]
is an example of the way methods are called in Objective-C. This is roughly
equivalent to self.integer() in C++. Here are two more, slightly more compli-
cated fi les:

 #import “Integer.h”

 @interface Integer (Add_Mult)

 - (id) add_mult: (Integer *) addend with_multiplier: (int) mult;

 @end

and

#import “Add_Mult.h”

 @implementation Integer (Add_Mult)

 - (id) add_mult: (Integer *) addend with_multiplier:(int)mult

 {

 return [self set_integer: [self get_integer] + [addend get_integer]

* mult];

}

@end

95363c01.indd 1195363c01.indd 11 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

12 Part I ■ Mac OS X Basics

These two fi les show how multiple parameters are passed to a function. A
label, in this case with_multiplier, can be added to the additional parameters.
The method is referred to as add_mult:with_multiplier:. The following code
shows how to call a function requiring multiple parameters.

#include <stdio.h>

#import “Integer.h”

#import “Add_Mult.h”

#import “Display.h”

 int main(int argc, char *argv[])

 {

 Integer *num1 = [Integer new], *num2 = [Integer new];

 [num1 integer:atoi(argv[1])];

 [num2 integer:atoi(argv[2])];

 [num1 add_mult:num2 with_multiplier: 2];

 [num1 showint];

 }

Building this is as easy as invoking gcc with an additional argument.

$ gcc -g -x objective-c main.m Integer.m Add_Mult.m Display.m -lobjc

Running the program shows that it can indeed add a number multiplied
by two.

$./a.out 1 4

9

As a sample of things to come, consider the disassembled version of the
add_mult:with_multiplier: function.

0x1f02 push ebp

0x1f03 mov ebp,esp

0x1f05 push edi

0x1f06 push esi

0x1f07 push ebx

0x1f08 sub esp,0x1c

0x1f0b call 0x1f10

0x1f10 pop ebx

0x1f11 mov edi,DWORD PTR [ebp+0x8]

0x1f14 mov edx,DWORD PTR [ebp+0x8]

0x1f17 lea eax,[ebx+0x1100]

0x1f1d mov eax,DWORD PTR [eax]

0x1f1f mov DWORD PTR [esp+0x4],eax

0x1f23 mov DWORD PTR [esp],edx

0x1f26 call 0x400a <dyld_stub_objc_msgSend>

0x1f2b mov esi,eax

95363c01.indd 1295363c01.indd 12 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 13

0x1f2d mov edx,DWORD PTR [ebp+0x10]

0x1f30 lea eax,[ebx+0x1100]

0x1f36 mov eax,DWORD PTR [eax]

0x1f38 mov DWORD PTR [esp+0x4],eax

0x1f3c mov DWORD PTR [esp],edx

0x1f3f call 0x400a <dyld_stub_objc_msgSend>

0x1f44 imul eax,DWORD PTR [ebp+0x14]

0x1f48 lea edx,[esi+eax]

0x1f4b lea eax,[ebx+0x10f8]

0x1f51 mov eax,DWORD PTR [eax]

0x1f53 mov DWORD PTR [esp+0x8],edx

0x1f57 mov DWORD PTR [esp+0x4],eax

0x1f5b mov DWORD PTR [esp],edi

0x1f5e call 0x400a <dyld_stub_objc_msgSend>

0x1f63 add esp,0x1c

0x1f66 pop ebx

0x1f67 pop esi

0x1f68 pop edi

0x1f69 leave

0x1f6a ret

Looking at this, it is tough to imagine what this function does. While there
is an instruction for the multiplication (imul), there is no addition occurring.
You’ll also see that, typical of an Objective-C binary, almost every function
call is to objc_msgSend, which can make it diffi cult to know what is going on.
There is also the strange call instruction at address 0×1f0b which calls the next
instruction. These problems (along with some solutions) will be addressed in
more detail in Chapter 6, “Reverse Engineering.”

Universal Binaries and the Mach-O File Format

Applications and libraries in Mac OS X use the Mach-O (Mach object) fi le for-
mat and may come ready for different architectures, which are called universal
binaries.

Universal Binaries
For legacy support, many binaries in Leopard are universal binaries. A universal
binary can support multiple architectures in the same fi le. For Mac OS X, this
is usually PowerPC and x86.

$ fi le /bin/ls

/bin/ls: Mach-O universal binary with 2 architectures

/bin/ls (for architecture i386): Mach-O executable i386

/bin/ls (for architecture ppc7400): Mach-O executable ppc

95363c01.indd 1395363c01.indd 13 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

14 Part I ■ Mac OS X Basics

Each universal binary has the code necessary to run on any of the architec-
tures it supports. The same exact ls binary from the code example can run on
a Mac with an x86 processor or a PowerPC processor. The obvious drawback is
fi le size, of course. The gcc compiler in Mac OS X emits Mach-O-format binaries
by default. To build a universal binary, one additional fl ag must be passed to
specify the target architectures desired. In the following example, a universal
binary for the x86 and PowerPC architectures is created.

$ gcc -arch ppc -arch i386 -o test-universal test.c

$ file test-universal

test-universal: Mach-O universal binary with 2 architectures

test-universal (for architecture ppc7400): Mach-O executable ppc

test-universal (for architecture i386): Mach-O executable i386

To see the fi le-size difference, compare this binary to the single-architecture
version:

-rwxr-xr-x 1 user1 user1 12564 May 1 12:55 test

-rwxr-xr-x 1 user1 user1 28948 May 1 12:54 test-universal

Mach-O File Format
This fi le format supports both statically and dynamically linked executables.
The basic structure contains three regions: the header, the load commands, and
the actual data.

The header contains basic information about the fi le, such as magic bytes to
identify it as a Mach-O fi le and information about the target architecture. The
following is the structure from the header, compliments of the /usr/include/
mach-o/loader.h fi le.

struct mach_header{

 uint32_t magic;

 cpu_type_t cputype;

 cpu_subtype_t cpusubtype;

 uint32_t filetype;

 uint32_t ncmds;

 uint32_t sizeofcmds;

 uint32_t flags;

};

The magic number identifi es the fi le as Mach-O. The cputype will probably
be either PowerPC or I386. The cpusubtype can specify specifi c models of CPU
on which to run. The fi letype indicates the usage and alignment for the fi le.

95363c01.indd 1495363c01.indd 14 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 15

The ncmds and sizeofcmds have to do with the load commands, which will be
discussed shortly.

Next is the load-commands region. This specifi es the layout of the fi le in
memory. It contains the location of the symbol table, the main thread context
at the beginning of execution, and which shared libraries are required.

The heart of the fi le is the fi nal region, the data, which consists of a number
of segments as laid out in the load-commands region. Each segment can contain
a number of data sections. Each of these sections contains code or data of one
particular type; see Figure 1-2.

Header

Data

Segment 1

Load Commands

Load Commands for Segment 1
Load Commands for Segment 2

Section 1
Section 2

Segment 2

Section 1
Section 2

Figure 1-2: A Mach-O file-format example for a file with two segments, each having
two sections

Example
All of this information about universal binaries and the Mach-O format is best
seen by way of an example. Looking again at the /bin/ls binary, you can see
the universal headers using otool.

$ otool -f

Fat headers

95363c01.indd 1595363c01.indd 15 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

16 Part I ■ Mac OS X Basics

fat_magic 0xcafebabe

nfat_arch 2

architecture 0

 cputype 7

 cpusubtype 3

 capabilities 0x0

 offset 4096

 size 36464

 align 2^12 (4096)

architecture 1

 cputype 18

 cpusubtype 10

 capabilities 0x0

 offset 40960

 size 32736

 align 2^12 (4096)

Looking at /usr/include/mach/machine.h, you can see that the fi rst architec-
ture has cputype 7, which corresponds to CPU_TYPE_X86 and has a cpusubtype
of CPU_SUBTYPE_386. Not surprisingly, the second architecture has values
CPU_TYPE_POWERPC and CPU_SUBTYPE_POWERPC_7400, respectively.

Next we can obtain the Mach header.

$ otool -h /bin/ls

/bin/ls:

Mach header

 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

0xfeedface 7 3 0x00 2 14 1304 0x00000085

In this case, we again see the cputype and cpusubtype. The fi letype is MH_
EXECUTE and there are 14 load commands. The fl ags work out to be MH_
NOUNDEFS | MH_DYLDLINK | MH_TWOLEVEL.

Moving on, we see some of the load commands for this binary.

$ otool -l /bin/ls

/bin/ls:

Load command 0

 cmd LC_SEGMENT

 cmdsize 56

 segname __PAGEZERO

 vmaddr 0x00000000

 vmsize 0x00001000

 fileoff 0

 filesize 0

 maxprot 0x00000000

 initprot 0x00000000

 nsects 0

 flags 0x0

Load command 1

95363c01.indd 1695363c01.indd 16 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 17

 cmd LC_SEGMENT

 cmdsize 260

 segname __TEXT

 vmaddr 0x00001000

 vmsize 0x00005000

 fileoff 0

 filesize 20480

 maxprot 0x00000007

 initprot 0x00000005

 nsects 3

 flags 0x0

Section

 sectname __text

 segname __TEXT

 addr 0x000023c4

 size 0x000035df

 offset 5060

 align 2^2 (4)

 reloff 0

 nreloc 0

 flags 0x80000400

 reserved1 0

 reserved2 0

…

Bundles

In Mac OS X, shared resources are contained in bundles. Many kinds of
bundles contain related fi les, but we’ll focus mostly on application and frame-
work bundles. The types of resources contained within a bundle may consist
of applications, libraries, images, documentation, header fi les, etc. Basically, a
bundle is a directory structure within the fi le system. Interestingly, by default
this directory looks like a single object in Finder.

$ ls -ld iTunes.app

drwxrwxr-x 3 root admin 102 Apr 4 13:15 iTunes.app

This naive view of fi les can be changed within Finder by selecting Show
Package Contents in the Action menu, but you probably use the Terminal appli-
cation rather than Finder, anyway.

Within application bundles, there is usually a single folder called Contents.
We’ll give you a quick tour of the QuickTime Player bundle.

$ ls /Applications/QuickTime\ Player.app/Contents/

CodeResources Info.plist PkgInfo Resources

Frameworks MacOS PlugIns version.plist

95363c01.indd 1795363c01.indd 17 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

18 Part I ■ Mac OS X Basics

The binary itself is within the MacOS directory. If you want to launch the
program through the command line or a script, you will likely have to refer to
the following binary, for example.

$ /Applications/QuickTime\ Player.app/Contents/MacOS/QuickTime\ Player

The Resources directory contains much of the noncode, such as images, mov-
ies, and icons. The Frameworks directory contains the associated framework
bundles, in this case DotMacKit. Finally, there is a number of plist, or property
list, fi les.

Property-list fi les contain confi guration information. A plist fi le may contain
user-specifi c or system-wide information. Plist fi les can be either in binary or
XML format. The XML versions are relatively straightforward to read. The fol-
lowing is the beginning of the Info.plist fi le from QuickTime Player.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>CFBundleDevelopmentRegion</key>

 <string>English</string>

 <key>CFBundleDocumentTypes</key>

 <array>

 <dict>

 <key>CFBundleTypeExtensions</key>

 <array>

 <string>aac</string>

 <string>adts</string>

 </array>

 <key>CFBundleTypeMIMETypes</key>

 <array>

 <string>audio/aac</string>

 <string>audio/x-aac</string>

 </array>

 <key>CFBundleTypeName</key>

 <string>Audio-AAC</string>

 <key>CFBundleTypeRole</key>

 <string>Viewer</string>

 <key>NSDocumentClass</key>

 <string>QTPMovieDocument</string>

 <key>NSPersistentStoreTypeKey</key>

 <string>Binary</string>

 </dict>

95363c01.indd 1895363c01.indd 18 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 19

Many of the keys and their meaning can be found at http://developer
.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/

PListKeys.html. Here is a quick description of those found in the excerpt:

 CFBundleDevelopmentRegion: The native region for the bundle ■

 CFBundleDocumentTypes: The document types supported by the ■

bundle

 CFBundleTypeExtensions: File extension to associate with this docu- ■

ment type

 CFBundleTypeMIMETypes: MIME type name to associate with this ■

document type

 CFBundleTypeName: An abstract (and unique) way to refer to the docu- ■

ment type

 CFBundleTypeRole: The application’s role with respect to this docu- ■

ment type; possibilities are Editor, Viewer, Shell, or None

 NSDocumentClass: Legacy key for Cocoa applications ■

 NSPersistentStoreTypeKey: The Core Data type ■

Many of these will be important later, when we’re identifying the attack
surface in Chapter 3, “Attack Surface.” It is possible to convert this XML plist
into a binary plist using plutil, or vice versa.

$ plutil -convert binary1 -o Binary.Info.plist Info.plist

$ plutil -convert xml1 -o XML.Binary.Info.plist Binary.Info.plist

$ file *Info.plist

Binary.Info.plist: Apple binary property list

Info.plist: XML 1.0 document text

XML.Binary.Info.plist: XML 1.0 document text

$ md5sum XML.Binary.Info.plist Info.plist

de13b98c54a93c052050294d9ca9d119 XML.Binary.Info.plist

de13b98c54a93c052050294d9ca9d119 Info.plist

Here we fi rst converted QuickTime Player’s Info.plist to binary format. We then
converted it back into XML format. The fi le command shows the conversion has
occurred and md5sum confi rms that the conversion is precisely reversible.

launchd

Launchd is Apple’s replacement for cron, xinetd, init, and others. It was intro-
duced in Mac OS X v10.4 (Tiger) and performs tasks such as initializing systems,
running startup programs, etc. It allows processes to be started at various times
or when various conditions occur, and ensures that particular processes are
always running. It handles daemons at both the system and user level.

95363c01.indd 1995363c01.indd 19 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

20 Part I ■ Mac OS X Basics

The systemwide launchd configuration files are stored in the /System/
Library/LaunchAgents and /System/Library/LaunchDaemons directories.
User-specifi c fi les are in ~/Library/LaunchAgents. The difference between
daemons and agents is that daemons run as root and are intended to run in
the background. Agents are run with the privileges of a user and may run in
the foreground; they can even include a graphical user interface. Launchctl is
a command-line application used to load and unload the daemons.

The confi guration fi les for launchd are, not surprisingly, plists. We’ll show
you how one works. Consider the fi le com.apple.PreferenceSyncAgent.plist.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” “http://

www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Label</key>

 <string>com.apple.PreferenceSyncAgent</string>

 <key>ProgramArguments</key>

 <array>

 <string>/System/Library/CoreServices/

PreferenceSyncClient.app/Contents/MacOS/PreferenceSyncClient</string>

 <string>--sync</string>

 <string>--periodic</string>

 </array>

 <key>StartInterval</key>

 <integer>3599</integer>

</dict>

</plist>

This plist uses three keys. The Label key identifies the job to launchd.
ProgramArguments is an array consisting of the application to run as well as
any necessary command-line arguments. Finally, StartInterval indicates that
this process should be run every 3,599 seconds, or just more than once an hour.
Other keys that might be of interest include

 UserName: Indicates the user to run the job as ■

 OnDemand: Indicates whether to run the job when asked or keep it ■

running all the time

 StartCalendarInterval: Provides cron-like launching of applications at ■

various times

Why should you care about this? Well, there are a few times it might be handy.
One is when breaking out of a sandbox, which we’ll discuss later in this chapter.
Another is in when providing automated processing needed in fuzzing, which
we’ll discuss more in Chapter 4’s section “In-Memory Fuzzing.” For example,
consider the following plist fi le.

95363c01.indd 2095363c01.indd 20 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 21

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN”

“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Label</key>

 <string>com.apple.KeepSafariAlive</string>

 <key>ProgramArguments</key>

 <array>

 <string>/Applications/Safari.app/Contents/MacOS/Safari <

/string>

 </array>

 <key>OnDemand</key>

 <false/>

</dict>

</plist>

Save this to a fi le called ~/Library/LaunchAgents/com.apple.KeepSafariAlive.
plist. Then start it up with

$ launchctl load Library/LaunchAgents/com.apple.KeepSafariAlive.plist

This should start up Safari. Imagine a situation in which fuzzing is occur-
ring while you’re using a Meta refresh tag from Safari’s default home page.
The problem is that when Safari inevitably crashes, the fuzzing will stop. The
solution is the preceeding launchd fi le, which restarts it automatically. Give it
a try, and pretend the fuzzing killed Safari.

$ killall -9 Safari

The launchd agent should respawn Safari automatically. To turn off this
launchd job, issue the following command:

$ launchctl unload Library/LaunchAgents/com.apple.KeepSafariAlive.plist

Leopard Security

Since we’re talking about Mac OS X in general, we should talk about security
features added to Leopard. This section covers some topics of interest from this
fi eld. Some of these address new features of Leopard while others are merely
updates to topics relevant to the security of the system.

95363c01.indd 2195363c01.indd 21 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

22 Part I ■ Mac OS X Basics

Library Randomization
There are two steps to attacking an application. The fi rst is to fi nd a vulner-
ability. The second is to exploit it in a reliable manner. There seems to be no end
to vulnerabilities in code. It is very diffi cult to eliminate all the bugs from an
old code base, considering that a vulnerability may present itself as a missing
character in one line out of millions of lines of source code. Therefore, many
vendors have concluded that vulnerabilities are inevitable, but they can at least
make exploitation diffi cult if not impossible to accomplish.

Beginning with Leopard, one anti-exploitation method Mac OS X employs
is library randomization. Leopard randomizes the addresses of most librar-
ies within a process address space. This makes it harder for an attacker to get
control, as they can not rely on these addresses being the same. Nevertheless,
Leopard still does not randomize many elements of the address space. Therefore
we prefer not to use the term address space layout randomization (ASLR) when
referring to Leopard. In true ASLR, the locations of the executable, libraries,
heap, and stack are all randomized. As you’ll see shortly, in Leopard only the
location of (most of) the libraries is randomized. Unfortunately for Apple, just
as one bug is enough to open a system to attacks, leaving anything not random-
ized is often enough to allow a successful attack, and this will be demonstrated
in Chapters 7, 8, and 10. By way of comparison, Windows is often criticized for
not forcing third-party applications (such as Java) to build their libraries to be
compatible with ASLR. In Leopard, library randomization is not possible even
in the Apple binaries!

Leopard’s library randomization is not well documented, but critical informa-
tion on the topic can be found in the /var/db/dyld directory. For example, the
map of where different libraries should be loaded is in the dyld_shared_cache_
i386.map fi le in this directory. An example of this fi le’s contents is provided
in the code that follows. Obviously, the contents of this fi le will be different
on different systems; however, the contents do not change upon reboot. This
fi le may change when the system is updated. The fi le is updated when the
update_dyld_shared_cache program is run. Since the location in which the
libraries are loaded is fi xed for extended periods of time for a given system
across all processes, the library randomization implemented by Leopard does
not help prevent local-privilege escalation attacks.

/usr/lib/system/libmathCommon.A.dylib

 __TEXT 0x945B3000 -> 0x945B8000

 __DATA 0xA0679000 -> 0xA067A000

 __LINKEDIT 0x9735F000 -> 0x9773D000

/System/Library/Frameworks/Quartz.framework/Versions/

A/Frameworks/ImageKit.framework/Versions/A/ImageKit

 __TEXT 0x945B8000 -> 0x946F0000

 __DATA 0xA067A000 -> 0xA0682000

95363c01.indd 2295363c01.indd 22 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 23

 __OBJC 0xA0682000 -> 0xA06A6000

 __IMPORT 0xA0A59000 -> 0xA0A5A000

 __LINKEDIT 0x9735F000 -> 0x9773D000

This excerpt from the dyld_shared_cache_i386.map fi le shows where two
libraries, libmathCommon and ImageKit, will be loaded in memory on this
system.

To get a better idea of how Leopard’s randomization works (or doesn’t), con-
sider the following simple C program.

#include <stdio.h>

#include <stdlib.h>

void foo(){

 ;

}

int main(int argc, char *argv[]){

 int y;

 char *x = (char *) malloc(128);

 printf(“Lib function: %08x, Heap: %08x, Stack: %08x, Binary:

%08x\n”, &malloc, x, &y, &foo);

}

This program prints out the address of the malloc() routine located within
libSystem. It then prints out the address of a malloced heap buffer, of a stack
buffer, and, fi nally, of a function from the application image. Running this pro-
gram on one computer (even after reboots) always reveals the same numbers;
however, running this program on different machines shows some differences
in the output. The following is the output from this program run on fi ve dif-
ferent Leopard computers.

Lib function: 920d7795, Heap: 00100120, Stack: bffff768, Binary:

00001f66

Lib function: 9120b795, Heap: 00100120, Stack: bffffab8, Binary:

00001f66

Lib function: 93809795, Heap: 00100120, Stack: bffff9a8, Binary:

00001f66

Lib function: 93d9e795, Heap: 00100120, Stack: bffff8d8, Binary:

00001f66

Lib function: 96841795, Heap: 00100120, Stack: bffffa38, Binary:

00001f66

This demonstrates that the addresses to which libraries are loaded are indeed
randomized from machine to machine. However, the heap and the applica-
tion image clearly are not, in this case at least. The small amount of variation
in the location of the stack buffer can be attributed to the stack containing

95363c01.indd 2395363c01.indd 23 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

24 Part I ■ Mac OS X Basics

the environment for the program, which will differ depending on the user’s
confi guration. The stack location is not randomized. So while some basic ran-
domization occurs, there are still signifi cant portions of the memory that are
not random, and, in fact, are completely predictable. We’ll show in Chapters 7
and 8 how to defeat this limited randomization.

Executable Heap
Another approach to making exploitation more diffi cult is to make it hard to
execute injected code within a process—i.e., hard to execute shellcode. To do
this, it is important to make as much of the process space nonexecutable as
possible. Obviously, some of the space must be executable to run programs, but
making the stack and heap nonexecutable can go a long way toward making
exploitation diffi cult. This is the idea behind Data Execution Prevention (DEP)
in Windows and W X̂ in OpenBSD.

Before we dive into an explanation of memory protection in Leopard, we need
fi rst to discuss hardware protections. For x86 processors, Apple uses chips from
Intel. Intel uses the XD bit, or Execute Disable bit, stored in the page tables to
mark areas of memory as nonexecutable. (In AMD processors, this is called the
NX bit for No Execute.) Any section of memory with the XD bit set can be used
only for reading or writing data; any attempt to execute code from this memory
will cause a program crash. In Mac OS X, the XD bit is set on all stack memory,
thus preventing execution from the stack. Consider the following program that
attempts to execute where the XD bit is set.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

 void (*f)();

 char x[4];

 memcpy(x, shellcode, sizeof(shellcode));

 f = (void (*)()) x;

 f();

}

Running this program shows that it crashes when it attemps to exeucte on
the stack

$./stack_executable

Segmentation fault

95363c01.indd 2495363c01.indd 24 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 25

This same program will execute on a Mac running on a PPC chip (although
the shellcode will be wrong, of course), since the stack is executable in that
architecture.

The stack is in good shape, but what about the heap? A quick look with the
vmmap utility shows that the heap is read/write only.

==== Writable regions for process 12137

__DATA 00002000-00003000 [4K] rw-/rwx SM=COW foo

__IMPORT 00003000-00004000 [4K] rwx/rwx SM=COW foo

MALLOC (freed?) 00006000-00007000 [4K] rw-/rwx SM=PRV

MALLOC_TINY 00100000-00200000 [1024K] rw-/rwx SM=PRV

DefaultMallocZone_0x100000

__DATA 8fe2e000-8fe30000 [8K] rw-/rwx SM=COW

/usr/lib/dyld

__DATA 8fe30000-8fe67000 [220K] rw-/rwx SM=PRV

/usr/lib/dyld

__DATA a052e000-a052f000 [4K] rw-/rw- SM=COW

/usr/lib/system/libmathCommon.A.dylib

__DATA a0550000-a0551000 [4K] rw-/rw- SM=COW

/usr/lib/libgcc_s.1.dylib

shared pmap a0600000-a07e5000 [1940K] rw-/rwx SM=COW

__DATA a07e5000-a083f000 [360K] rw-/rwx SM=COW

/usr/lib/libSystem.B.dylib

shared pmap a083f000-a09ac000 [1460K] rw-/rwx SM=COW

Stack bf800000-bffff000 [8188K] rw-/rwx SM=ZER

Stack bffff000-c0000000 [4K] rw-/rwx SM=COW thread

0

Leopard does not set the XD bit on any parts of memory besides the stack. It
is unclear if this is a bug, an oversight, or intentional, but even if the software’s
memory permissions are set to be nonexecutable, you can still execute anywhere
except the stack. The following simple program illustrates that point.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

 void (*f)();

 char *x = malloc(2);

 memcpy(x, shellcode, sizeof(shellcode));

 f = (void (*)()) x;

 f();

}

95363c01.indd 2595363c01.indd 25 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

26 Part I ■ Mac OS X Basics

This program copies some shellcode (in this case a simple infi nite loop) onto
the heap and then executes it. It runs fi ne, and with a debugger you can verify
that it is indeed executing within the heap buffer. Taking this one step further, we
can explicitly set the heap buffer to be nonexecutable and still execute there.

#include <sys/mman.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

 void (*f)();

 char *x = malloc(2);

 unsigned int page_start = ((unsigned int) x) & 0xfffff000;

 int ret = mprotect((void *) page_start, 4096, PROT_READ | PROT_

WRITE);

 if(ret<0){ perror(“mprotect failed”); }

 memcpy(x, shellcode, sizeof(shellcode));

 f = (void (*)()) x;

 f();

}

Amazingly, this code still executes fi ne. Furthermore, even the stack protec-
tions can be overwritten with a call to mprotect.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/mman.h>

char shellcode[] = “\xeb\xfe”;

int main(int argc, char *argv[]){

 void (*f)();

 char x[4];

 memcpy(x, shellcode, sizeof(shellcode));

 f = (void (*)()) x;

 mprotect((void *) 0xbffff000, 4092, PROT_READ | PROT_WRITE |

PROT_EXEC);

 f();

}

This might be a possible avenue of attack in a return-to-libc attack. So, to
summarize, within Leopard it is possible to execute code anywhere in a process
besides the stack. Furthermore, it is possible to execute code on the stack after
a call to mprotect.

95363c01.indd 2695363c01.indd 26 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 27

Stack Protection (propolice)
Although you would think stack overfl ows are a relic of the past, they do still
arise, as you’ll see in Chapter 7, “Exploring Stack Overfl ows.” An operating sys-
tem’s designers need to worry about making stack overfl ows diffi cult to exploit;
otherwise, the exploitation of overfl ows is entirely trivial and reliable. With
this in mind, the GCC compiler that comes with Leopard has an option called
-fstack-protector that sets a value on the stack, called a canary. This value is
randomly set and placed between the stack variables and the stack metadata.
Then, before a function returns, the canary value is checked to ensure it hasn’t
changed. In this way, if a stack buffer overfl ow were to occur, the important
metadata stored on the stack, such as the return address and saved stack pointer,
could not be corrupted without fi rst corrupting the canary. This helps protect
against simple stack-based overfl ows. Consider the following program.

int main(int argc, char *argv[]){

 char buf[16];

 strcpy(buf, argv[1]);

}

This contains an obvious stack-overfl ow vulnerability. Normal execution
causes an exploitable crash.

$ gdb ./stack_police

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct 2 04:07:49 UTC

2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you

are

welcome to change it and/or distribute copies of it under certain

conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for

details.

This GDB was configured as “i386-apple-darwin”…

No symbol table is loaded. Use the “file” command.

Reading symbols for shared libraries … done

(gdb) set args

AA

(gdb) r

Starting program: /Users/cmiller/book/macosx-book/stack_police

AA

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41414141

0x41414141 in ?? ()

(gdb)

95363c01.indd 2795363c01.indd 27 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

28 Part I ■ Mac OS X Basics

Compiling with the propolice option, however, prevents exploitation.

$ gcc -g -fstack-protector -o stack_police stack_police.c

$./stack_police AAA

Abort trap

In this case, a SIGABRT signal was sent by the function that checks the
canary’s value.

This is a good protection against stack-overfl ow exploitation, but it helps
only if it is used. Leopard binaries sometimes use it and sometimes don’t.
Observe.

$ nm QuickTime\ Player | grep stack

 U ___stack_chk_fail

 U ___stack_chk_guard

$ nm /Applications/Safari.app/Contents/MacOS/Safari | grep stack

Here, the nm tool (along with grep) is used to fi nd the symbols utilized in two
applications: QuickTime Player and Safari. QuickTime Player contains the sym-
bols that are used to validate the stack, whereas Safari does not. Therefore, the
code within the main Safari executable does not have this protection enabled.

It is important to note that when compiling, this stack protection will be used
only when the option is used while compiling the specifi c source fi le in which
the code is located. In other words, within a single application or library, there
may be some functions with this protection enabled but others without the
protection enabled.

One fi nal note: It is possible to confuse propolice by smashing the stack com-
pletely. Consider the previous sample program with 5,000 characters entered
as the fi rst argument.

(gdb) set args `perl -e ‘print “A”x5000’`

(gdb) r

Starting program: /Users/cmiller/book/macosx-book/stack_police `perl -e

‘print “A”x5000’`

Reading symbols for shared libraries ++. done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x41414140

0x920df690 in strlen ()

(gdb) bt

#0 0x920df690 in strlen ()

#1 0x92101927 in strdup ()

#2 0x92103947 in asl_set_query ()

#3 0x9211703e in asl_set ()

#4 0x92130511 in vsyslog ()

#5 0x921303e8 in syslog ()

#6 0x921b3ef1 in __stack_chk_fail ()

#7 0x00001ff7 in main (argc=1094795585, argv=0xbfffcfcc) at

stack_police.c:4

95363c01.indd 2895363c01.indd 28 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 29

The stack-check failure handler, __stack_chk_fail(), calls syslog syslog(“error
%s”, argv[0]);. We have overwritten the argv[0] pointer with our own value. This
does not appear to be exploitable, but unexpected behavior in the stack-check
failure handler is not a good sign.

Firewall
Theoretically, Leopard offers important security improvements in the form

of its fi rewall. In Tiger the fi rewall was based on ipfw (IP fi rewall), the BSD
fi rewall. The ports that are open were controlled by the application’s plist fi les.
In Leopard, ipfw is still there but always has a single rule.

$ sudo ipfw list

65535 allow ip from any to any

Instead the fi rewall is truly application based and is controlled by /usr/
libexec/ApplicationFirewall/socketfi lterfw and the associated com.apple.nke
.applicationfi rewall driver.

Many issues with Leopard’s firewall prevent it from being a significant
obstacle to attack. The fi rst is that it is not enabled by default. Obviously, if it is
not on, it isn’t an issue for an attacker. The next is that it blocks only incoming
connections. This means any Leopard box that had some services running and
listening might be protected; however, out-of-the-box Macs don’t have many
listening processes running, so this isn’t really an issue. If users were to turn
on something extra, like fi le sharing, they would obviously allow connections
through the fi rewall, too. As far as exploit payload goes, it is no more diffi cult
to write a payload that connects out from the compromised host (allowed by
the fi rewall) than to sit and wait for incoming connections (not allowed by the
fi rewall). Regardless, it is hard to imagine a scenario in which the Leopard
fi rewall would actually prevent an otherwise-successful attack from working.
Instead, it is basically designed to prevent errant third-party applications from
opening listening ports.

Sandboxing (Seatbelt)
Another security feature introduced in Leopard is the idea of sandboxing appli-
cations with the kernel extension Seatbelt. This mechanism is based on the prin-
ciple that your Web browser probably doesn’t need to access your address book
and your media player probably doesn’t need to bind to a port. Seatbelt allows
an application developer to explicitly allow or deny an application to perform
particular actions. In this way, exploitation of a vulnerability in a particular
application doesn’t necessarily provide complete access to the system.

95363c01.indd 2995363c01.indd 29 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

30 Part I ■ Mac OS X Basics

Currently the source code for this mechanism is not available, but by looking
at and playing around with the XNU source code, it becomes clear how applica-
tion sandboxing works. The documentation for it is scarce to nonexistent. At this
point, this feature is not intended to be used by anyone but Apple engineers, as
the following warning indicates.

WARNING: The sandbox rule capabilities and syntax used in this fi le are currently
an Apple SPI (System Private Interface) and are subject to change at any time
without notice. Apple may in [the] future announce an offi cial public supported
sandbox API, but until then Developers are cautioned not to build products that
use or depend on the sandbox facilities illustrated here.

With one exception, applications that are to be sandboxed need to explicitly
call the function sandbox_init() to execute within a sandbox. All child processes
of a sandboxed function also operate within the sandbox. This allows you to
sandbox applications that do not explicitly call sandbox_init() by executing them
from within an application in an existing sandbox. One of the parameters to the
sandbox_init() function is the name of a profi le in which to execute. Available
profi les include the following.

 kSBXProfi leNoInternet: TCP/IP networking is prohibited. ■

 kSBXProfi leNoNetwork: All sockets-based networking is prohibited. ■

 kSBXProfi leNoWrite: File-system writes are prohibited. ■

 kSBXProfi leNoWriteExceptTemporary: File-system writes are restricted ■

to the temporary folder /var/tmp and the folder specified by the
confstr(3) confi guration variable _CS_DARWIN_USER_TEMP_DIR.

 kSBXProfilePureComputation: All operating-system services are ■

prohibited.

These profi les are statically compiled into the kernel. We will test some of
these profi les in the following code by using the sandbox-exec command. For
this command, these profi les are summoned by the terms nointernet, nonet,
nowrite, write-tmp-only, and pure-computation.

$ sandbox-exec -n nonet /bin/bash

bash-3.2$ ping www.google.com

bash: /sbin/ping: Operation not permitted

bash-3.2$ exit

$ sandbox-exec –n nowrite /bin/bash

bash-3.2$ cat > foo

bash: foo: Operation not permitted

Here we demonstrate starting the bash shell with no networking allowed. We
omit showing that all the local commands still work and jump straight to try-
ing to use ping, which fails. Exiting out of that sandbox, we try out the nowrite

95363c01.indd 3095363c01.indd 30 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 31

sandbox and demonstrate that we cannot write fi les even though normally it
would be allowed.

Additionally, it is possible to use a custom-written profi le. Although there is
no documentation on how to write one of these profi les, there are quite a few
well-documented examples in the /usr/share/sandbox directory from which
to start. These fi les are written using syntax from the Scheme programming
language and describe all the applications currently sandboxed. These applica-
tions include

 krb5kdc ■

 mDNSResponder ■

 mdworker ■

 named ■

 ntpd ■

 portmap ■

 quicklookd ■

 syslogd ■

 update ■

 xgridagentd ■

 xgridagentd_task_nobody ■

 xgridagentd_task_somebody ■

 xgridcontrollerd ■

Take a look at a couple of these fi les. The fi rst is quicklookd.

;;

;; quicklookd - sandbox profile

;; Copyright (c) 2006-2007 Apple Inc. All Rights reserved.

;;

;; WARNING: The sandbox rules in this file currently constitute

;; Apple System Private Interface and are subject to change at any time

and

;; without notice. The contents of this file are also auto-generated and

not

;; user editable; it may be overwritten at any time.

;;

(version 1)

(allow default)

(deny network-outbound)

(allow network-outbound (to unix-socket))

(deny network*)

(debug deny)

95363c01.indd 3195363c01.indd 31 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

32 Part I ■ Mac OS X Basics

This policy says that, by default, all actions are allowed except those that
are specifi cally denied. In this case, network communication is denied, as the
application doesn’t need it. Therefore, if this process were taken over by a remote
attacker (say, by providing the victim with a malicious fi le), the process would
not be able to open a remote socket back to the attacker. We’ll discuss a way
around this in a moment.

Another example is update.sb.

(version 1)

(debug deny)

(allow process-exec (regex #”^/usr/sbin/update$”))

(allow sysctl-read)

(allow file-read-data file-read-metadata

 (regex #”^/usr/lib/.*\.dylib$”

 #”^/var”

 #”^/private/var/db/dyld/”

 #”^/dev/urandom$”

 #”^/dev/dtracehelper$”))

(deny default)

This policy denies all actions by default and allows only those explicitly
needed. This is generally a safer approach. In this case, update can read fi les
only from select directories.

Now take a moment to see how this works on a test program. This program
takes the name of a fi le from the command line and attempts to open it, read it,
and print the results to the screen; i.e., it is a custom version of the cat utility.

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[]){

 int n;

 if(argc != 2){

 printf(“./openfile filename\n”);

 exit(-1);

 }

 char buf[64];

 FILE *f = fopen(argv[1], “r”);

 if(f==NULL){

 perror(“Error opening file:”);

 exit(-1);

 }

 while(n = fread(buf, 1, 64, f)){

 write(1, buf, n);

 }

 fclose(f);

}

95363c01.indd 3295363c01.indd 32 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

 Chapter 1 ■ Mac OS X Architecture 33

Consider the simple policy fi le. This fi le allows reading fi les only from /tmp.

(version 1)

(debug deny)

(allow process-exec (regex #”openfile”))

(allow file-read-data file-read-metadata

 (regex #”^/usr/lib/.*\.dylib$”

 #”^/private/tmp”))

(deny default)

We can see this policy being enforced by trying to read a fi le named hi, which
contains only the single word “hi.”

$./openfile hi

hi

$ sandbox-exec -f openfile.sb ./openfile hi

Error opening file:: Permission denied

$ sandbox-exec -f openfile.sb ./openfile /private/tmp/hi

hi

Here, the sandbox-exec binary is simply a wrapper that sets the sandbox and
then executes the other program within the sandbox as a child. As you can see,
the sandbox prevents reading from arbitrary directories, but still allows the
application to read from the /tmp directory.

It should be noted that sandboxes are not a cure-all. For instance, in the
quicklookd example, network connections are denied but anything else is per-
mitted. One way to achieve network access is to write a fi le to be executed to
the fi lesystem—perhaps a script that sets up a reverse shell—then confi gure
launchd to start it for you. As launchd is not in the sandbox, there will be no
restrictions on this new application. This is one example of circumventing the
sandbox.

Additionally, it is diffi cult to effectively sandbox an application like Safari.
This application makes arbitrary connections to the Internet, reads and writes
to a variety of fi les (consider the fi le:// URI handler as well as the fact a user
can use the Save As option from the pull down menu) and executes a vari-
ety of applications (through various URI handlers such as ssh://, vnc://, etc).
Therefore, it will be hard to write a policy that signifi cantly hinders an attacker
who gains control of the Safari process.

One fi nal note is that the Apple-authored software that runs on Windows
doesn’t have additional security precautions, such as application sandboxing.
When you download iTunes for Windows so that you can sync your iPhone,
you open yourself up to a remote attack against the mDNSResponder running
on your system without its protective sandbox.

95363c01.indd 3395363c01.indd 33 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

34 Part I ■ Mac OS X Basics

References

http://www.matasano.com/log/986/what-weve-since-learned-about-

leopard-security-features/

http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-2/

http://developer.apple.com/opensource/index.html

http://www.amazon.com/Mac-OS-Internals-Systems-Approach/

dp/0321278542

http://uninformed.org/index.cgi?v=4&a=3&p=17

http://cve.mitre/org/cgi-bin/cvema,e.cgi?name=2006-4392

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3749

http://www.otierney.net/objective-c.html

blog.nearband.com/2007/11/12/first-impressions-of-leopard#

95363c01.indd 3495363c01.indd 34 1/25/09 4:39:28 PM1/25/09 4:39:28 PM

