
Memory Corruption 101
Dino Dai Zovi

ddz@theta44.org

mailto:ddz@theta44.org
mailto:ddz@theta44.org


Memory Corruption

Memory corruption is when a programming error 

causes a program to change memory in an invalid way

Overwriting memory reserved for a different variable

Overwriting memory reserved for programming 

language runtime control structures

When memory corruption may allow an attacker to 

take control of a program, it is a security vulnerability



Memory Corruption Classes

Buffer overflows (Stack, Heap, Data segment, etc)

Format string injection

Out-of-bounds array accesses

Integer overflows (can lead to buffer overflows or out-

of-bounds array access)

Uninitialized memory use

Dangling/stale pointers



Memory Corruption Exploits

Usually the goal is to inject a machine code payload 

(“shellcode”) and get the target program to run it

Usually we just want it to give us a remote or higher-

privileged shell (/bin/sh or cmd.exe)

Not all exploits will use a payload that runs a shell

Not all memory corruption exploits execute shellcode



Solaris TTYPROMPT Bug

% telnet 

telnet> environ define TTYPROMPT abcdef 

telnet> o localhost 

SunOS 5.8 

bin c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

c c\n 

Last login: whenever 

$ whoami 

bin



Vulnerability Analysis

A program crashes, is it repeatable and reproducible?

Memory is corrupted, is it controllable?

Memory corruption can be controlled, is it exploitable?

Some tools are available to help

!exploitable (WinDbg)

Crash Wrangler (Mac OS X)



Exploit Development

Identify methods of controlling memory corruption

Leverage controlled memory corruption to affect the 

program’s behavior in a way that would give an 

attacker more privileges, capabilities, or access to the 

system

Ideally, we would like to make it execute our payload

Everyone loves a remote root/SYSTEM shell



Stack Buffer Overflows

The canonical, simplest type of memory corruption to 

understand and exploit

First publicly used by Robert Morris worm in 1988

Used a stack buffer overflow in VAX BSD in.fingerd

Are *still* exploitable on many systems today

Many operating systems and compilers include 

defenses against these now (more on this later)



 

FFFF 0000 

Saved frame Pointer 

Return Address 

Stack Variables 

Return Address 

Saved frame pointer 

Stack Variables 

FFFF FFFF 

FFFF FFFE 

Address 

FFFF FFFD 

Return Address 

Saved frame Pointer 

Stack Variables 

Grows 

Downward 

Function call arguments 

Function call arguments 

Function call arguments 

The Stack

Stack grows 

downward

Memory writes go 

upward

Stack variables can 

overflow into saved 

frame pointer and 

return address



Smashing the Stack and 

controlling EIP



Stack Buffer Overflow

 

FFFF 0000 

Frame Pointer 

Return Address 

Stack Variables 

Return Address 

Frame pointer 

Stack Variables 

FFFF FFFF 

FFFF FFFE 

Address 

FFFF FFFD 

Return Address 

Frame Pointer 

Stack Variables 

Grows 

Downward 

Stack variable 

overflows, overwriting 

the return address

The attacker writes a 

memory address in 

the stack for the return 

address

The subroutine returns 

into payload on stack



Let’s see a real (fake) one...



Heap Metadata Corruption



What is going on here?



And here?



Exploit By Numbers

1. Trigger the vulnerability

2. Identify usable characters for attack string

3. Identify offsets and significant elements in attack string

4. Fill in jump addresses, readable/writable addresses, 

etc

5. Identify amount of usable space for the payload

6. Drop in payload



Trigger the Vulnerability

Write a network client to talk to the server

Create a malformed file that gets opened by the app

Document (.doc, .ppt, .pdf)

Media file (.mp3, .mov, .wmv)

Create a malicious web page that is viewed by 

browser

Cause the target application to crash



Identify Usable Characters

The attack string is the part of the input that triggers 

the vulnerability and contains values for overwritten 

memory (and possibly the payload also)

Certain characters in the attack string may cause the 

application to parse the input differently and not trigger 

the vulnerability (“bad bytes”)

NULL bytes (any ASCII string)

Whitespace (\t\n\r )



Identify Offsets

Use a pattern string to identify offsets into your attack 

string of data placed into registers or written to 

memory

We are going to use Metasploit’s pattern_create.rb

% pattern_create.rb 32

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab

% pattern_offset.rb 0x41366141

18



Fill in Memory Addresses

For an exploit to function, certain parts of the attack 

string may need to readable, writable, or executable 

memory addresses

In particular, we want to overwrite the return address 

with the memory address of executable code

This memory address will redirect execution into our 

attack string

Spend quality time in your target’s address space



Identify Usable Space

We need to know how much room we have for our 

payload

We will size it out by placing increasingly large 

numbers of NOPs followed by a debug interrupt (int 3)

If the target generates a breakpoint exception, we have 

that much usable space

If the target crashes in another way, we may need to 

shrink the payload space



Drop in Payload

The payload must also not use any bad bytes or else it 

may get truncated and not execute properly

For simple payloads and vulnerabilities, avoiding NULL 

bytes in the instruction encodings may be enough

For more complex payloads and vulnerabilities, a 

payload decoder may be used to decode the payload 

before executing



Exploiting Windows 2000

There are many aspects of Windows 2000 and the x86 

processor that make exploitation of memory corruption 

vulnerabilities possible and even easy

Libraries are always loaded at same place in 

memory

Executable page protection permissions are ignored

There are no alignment requirements

There are no issues with cache coherency



Live Demo Time...



Exploitation Mitigation



Exploitation Mitigation

Finding and fixing every vulnerability is impossible

It is possible to make exploitation more difficult 

through:

Memory page protection

Run-time validation

Obfuscation and Randomization

Making every vulnerability non-exploitable is impossible



Timeline of Mitigations 

Windows 1.0 - Windows XP SP1

Corruption of stack and heap metadata is possible

Windows 2003

Operating System is compiled with stack cookies

Windows XP SP 2

Stack/heap cookies, SafeSEH, Software/Hardware DEP

Windows Vista

Address Space Layout Randomization



Visual Studio /GS Flag

Place a random 

“cookie” in stack 

frame before frame 

pointer and return 

address

Check cookie before 

using saved frame 

pointer and return 

address
char buf[1024]

canary

saved EBP

saved EIP



Structured Exception Handling

Supports __try/

__except blocks in C 

and C++ exceptions

Nested SEH frames 

are stored on stack

Contain pointer to next 

frame and exception 

filter function pointer
char buf[1024]

canary

...

SEH Frame



SEH Frame Overwrite Attack

Overwrite an exception handler function pointer in SEH 

frame and cause an exception before any of the 

overwritten stack cookies are detected

i.e. run data off the top of the stack

David Litchfield, “Defeating the Stack Based Buffer 

Overflow Protection Mechanism of Microsoft Windows 

2003 Server”

handler

prevfs:[0]

handler

prev

handler

prev



Visual Studio /SafeSEH

Pre-registers all exception handlers in the DLL or EXE

When an exception occurs, Windows will examine the 

pre-registered table and only call the handler if it exists 

in the table

What if one DLL wasn’t compiled w/ SafeSEH?

Windows will allow any address in that module as 

an SEH handler

This allows an attacker to still gain full control



RTL Heap Safe Unlinking

Corrupting the next/prev linked list pointers of a heap 

block on the free list allows an attacker to write a 

chosen value to a chosen location when that block is 

removed from the free list

i.e. Overwrite the global UnhandledExceptionFilter

Safe Unlinking adds a 16-bit cookie to heap header, 

which is checked before the block is removed



Data Execution Prevention

Software DEP

Makes sure that SEH exception handlers point to 

non-writable memory (weak)

Hardware DEP

Enforces that processor does not execute 

instructions from data memory pages (stack, heap)

Make page permission bits meaningful (R !=> X)



Bypassing DEP

Return-to-libc / code reuse

Return into the beginning of a library function

Function arguments come from attacker-controlled 

stack

Can be chained to call multiple functions in a row

On XP SP2 and Windows 2003, attacker could return 

to a particular place in NTDLL and disable DEP for the 

entire process



Return-Oriented Programming

Return into useful instruction sequences followed by 

return instructions

Chain useful sequences together to form useful 

operations (“gadgets”)

“store X at memory address Y”

“add X to value stored at memory address Y”

Academics have built “compilers” for return-oriented 

“programs” in C-like languages



Address Space Layout Randomization

Almost all exploits require hard-coding memory 

addresses

If those addresses are impossible to predict, those 

exploits would not be possible

ASLR moves around code (executable and libraries), 

data (stacks, heaps, and other memory regions)

Windows Vista randomizes DLLs at boot-time, 

everything else at run-time



Bypassing ASLR

Poor entropy

Sometimes the randomization isn’t random enough 

or the attacker may try as many times as needed

Memory address disclosure

Some vulnerabilities or other tricks can be used to 

reveal memory addresses in the target process

One address may be enough to build your exploit



Exploit Payloads



Local Unix Shellcode

The oldest buffer overflow exploits were local privilege 

escalation exploits against setuid executables

Just a small bit of machine code to run a shell

execve(“/bin/sh”, NULL, NULL)

Shell runs with higher privilege

Easy to write for any OS/Architecture if you know the 

architecture’s assembly language



execve(“/bin/sh”, NULL, NULL)


