
WINDOWS EXPLOITATION 101
Dino Dai Zovi / @dinodaizovi / ddz@theta44.org

mailto:ddz@theta44.org
mailto:ddz@theta44.org


Memory Corruption
Memory corruption is when a programming error causes a 
program to access memory in an invalid way

Overwriting memory reserved for a different variable

Overwriting memory reserved for programming language 
runtime control structures

Access uninitialized or freed memory

When memory corruption may allow an attacker to take control of 
a program, it is a security vulnerability



Memory Corruption Classes
Buffer overflows (Stack, Heap, Data segment, etc)

Format string injection

Out-of-bounds array accesses

Integer overflows (can lead to buffer overflows or out-of-bounds 
array access)

Uninitialized memory use

Dangling/stale pointers (i.e. use-after-free)



Memory Corruption Exploits

Usually the goal is to inject a machine code payload (“shellcode”) 
and get the target program to run it

Usually we just want it to give us a remote or higher-privileged 
shell (/bin/sh or cmd.exe)

Not all exploits will use a payload that runs a shell

Not all memory corruption exploits execute shellcode



Solaris TTYPROMPT Bug

% telnet 
telnet> environ define TTYPROMPT abcdef 
telnet> o localhost 

SunOS 5.8 

bin c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 
c c c c\n 
Last login: whenever 
$ whoami 
bin



Vulnerability Analysis

A program crashes, is it repeatable and reproducible?

Memory is corrupted, is it controllable?

Memory corruption can be controlled, is it exploitable?

Some tools are available to help

!exploitable (WinDbg)

Crash Wrangler (Mac OS X)



Exploit Development

Identify methods of controlling memory corruption

Leverage controlled memory corruption to affect the program’s 
behavior in a way that would give an attacker more privileges, 
capabilities, or access to the system

Ideally, we would like to make it execute our payload

Everyone loves a remote root/SYSTEM shell



Stack Buffer Overflows

The canonical, simplest type of memory corruption to understand 
and exploit

First publicly used by Robert Morris worm in 1988

Used a stack buffer overflow in VAX BSD in.fingerd

Are *still* exploitable on many systems today

Many operating systems and compilers include defenses against 
these now (more on this later)



 

FFFF 0000 

Saved frame Pointer 

Return Address 

Stack Variables 

Return Address 

Saved frame pointer 

Stack Variables 

FFFF FFFF 

FFFF FFFE 

Address 

FFFF FFFD 

Return Address 

Saved frame Pointer 

Stack Variables 

Grows 

Downward 

Function call arguments 

Function call arguments 

Function call arguments 

The Stack

Stack grows downward

Memory writes go upward

Stack variables can overflow 
into saved frame pointer and 
return address



Smashing the Stack and 
controlling EIP



 

FFFF 0000 

Frame Pointer 

Return Address 

Stack Variables 

Return Address 

Frame pointer 

Stack Variables 

FFFF FFFF 

FFFF FFFE 

Address 

FFFF FFFD 

Return Address 

Frame Pointer 

Stack Variables 

Grows 

Downward 

Stack Buffer Overflow

Stack variable overflows, 
overwriting the return address

The attacker writes a memory 
address in the stack for the 
return address

The subroutine returns into 
payload on stack



LET’S SEE A REAL (FAKE) 
ONE...



Exploit By Numbers

1. Trigger the vulnerability

2. Identify usable characters for attack string

3. Identify offsets and significant elements in attack string

4. Fill in jump addresses, readable/writable addresses, etc

5. Identify amount of usable space for the payload

6. Drop in payload



Trigger the Vulnerability

Write a network client to talk to the server

Create a malformed file that gets opened by the app

Document (.doc, .ppt, .pdf)

Media file (.mp3, .mov, .wmv)

Create a malicious web page that is viewed by browser

Cause the target application to crash



Identify Usable Characters

The attack string is the part of the input that triggers the 
vulnerability and contains values for overwritten memory (and 
possibly the payload also)

Certain characters in the attack string may cause the application to 
parse the input differently and not trigger the vulnerability (“bad 
bytes”)

NULL bytes (any ASCII string)

Whitespace (\t\n\r )



Identify Offsets

Use a pattern string to identify offsets into your attack string of 
data placed into registers or written to memory

We are going to use Metasploit’s pattern_create.rb

% pattern_create.rb 32
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab

% pattern_offset.rb 0x41366141
18



Fill in Memory Addresses

For an exploit to function, certain parts of the attack string may 
need to readable, writable, or executable memory addresses

In particular, we want to overwrite the return address with the 
memory address of executable code

This memory address will redirect execution into our attack 
string

Spend quality time in your target’s address space



Identify Usable Space

We need to know how much room we have for our payload

We will size it out by placing increasingly large numbers of NOPs 
followed by a debug interrupt (int 3)

If the target generates a breakpoint exception, we have that much 
usable space

If the target crashes in another way, we may need to shrink the 
payload space



Drop in Payload

The payload must also not use any bad bytes or else it may get 
truncated and not execute properly

For simple payloads and vulnerabilities, avoiding NULL bytes in 
the instruction encodings may be enough

For more complex payloads and vulnerabilities, a payload decoder 
may be used to decode the payload before executing



LIVE DEMO TIME...



EXPLOITATION MITIGATION



Exploitation Mitigation

Finding and fixing every vulnerability is impossible

It is possible to make exploitation more difficult through:

Memory page protection

Run-time validation

Obfuscation and Randomization

Making every vulnerability non-exploitable is impossible



Timeline of Mitigations 
Windows 1.0 - Windows XP SP1

Corruption of stack and heap metadata is possible

Windows Server 2003 RTM

Operating System is compiled with stack cookies

Windows XP SP 2

Stack/heap cookies, SafeSEH, Software/Hardware DEP

Windows Vista

Address Space Layout Randomization



Visual Studio /GS Flag

Place a random “cookie” in 
stack frame before frame 
pointer and return address

Check cookie before using 
saved frame pointer and 
return address

char buf[1024]

canary

saved EBP

saved EIP

D
at

a



Structured Exception Handling

Supports __try/__except 
blocks in C and C++ 
exceptions

Nested SEH frames are stored 
on stack

Contain pointer to next frame 
and exception filter function 
pointer char buf[1024]

canary

...

SEH Frame



SEH Frame Overwrite Attack
Overwrite an exception handler function pointer in SEH frame and 
cause an exception before any of the overwritten stack cookies are 
detected

i.e. run data off the top of the stack

David Litchfield, “Defeating the Stack Based Buffer Overflow 
Protection Mechanism of Microsoft Windows 2003 Server”

handler

prevfs:[0]

handler

prev

handler

prev



Visual Studio /SafeSEH

Pre-registers all exception handlers in the DLL or EXE

When an exception occurs, Windows will examine the pre-
registered table and only call the handler if it exists in the table

What if one DLL wasn’t compiled w/ SafeSEH?

Windows will allow any address in that module as an SEH 
handler

This allows an attacker to still gain full control



RTL Heap Safe Unlinking

Corrupting the next/prev linked list pointers of a heap block on 
the free list allows an attacker to write a chosen value to a chosen 
location when that block is removed from the free list

i.e. Overwrite the global UnhandledExceptionFilter

Safe Unlinking adds a 16-bit cookie to heap header, which is 
checked before the block is removed



Data Execution Prevention

Software DEP

Makes sure that SEH exception handlers point to non-writable 
memory (weak)

Hardware DEP

Enforces that processor does not execute instructions from data 
memory pages (stack, heap)

Make page permission bits meaningful (R !=> X)



DEP Status in Process Explorer



Modify DEP Policy



Bypassing DEP

Return-to-libc / code reuse

Return into the beginning of a library function

Function arguments come from attacker-controlled stack

Can be chained to call multiple functions in a row

On XP SP2 and Windows 2003, attacker could return to a 
particular place in NTDLL and disable DEP for the entire process



WriteProcessMemory() DEP Evasion

Posted by Spencer Pratt to Full-Disclosure on 3/301

Return into WriteProcessMemory() function with crafted 
arguments so that it overwrites itself in memory

WPM() will bypass memory page permissions

Writes new code that executes right after WPM calls 
NtWriteVirtualMemory() returns

Use WPM() to copy 1-3 byte chunks at known locations in 
memory together to form shellcode

1. “Clever DEP Trick”, http://seclists.org/fulldisclosure/2010/Mar/553

http://seclists.org/fulldisclosure/2010/Mar/att-553/Windows-DEP-WPM.txt
http://seclists.org/fulldisclosure/2010/Mar/att-553/Windows-DEP-WPM.txt


RETURN-ORIENTED 
PROGRAMMING



Return-to-libc
Return-to-libc (ret2libc)

An attack against non-executable 
memory segments (DEP, W^X, 
etc)

Instead of overwriting return 
address to return into shellcode, 
return into a loaded library to 
simulate a function call

Data from attacker’s controlled 
buffer on stack are used as the 
function’s arguments

i.e. call system(cmd)

Function

Next 
function

Arg 1

Arg 2

Stack G
row

th

“Getting around non-executable stack (and fix)”, Solar Designer (BUGTRAQ, August 1997)



Return Chaining
Stack unwinds upward

Can be used to call multiple 
functions in succession

First function must return into 
code to advance stack pointer 
over function arguments

i.e. pop-pop-ret

Assuming cdecl and 2 
arguments

Function 1

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
0043a82f: 

 ret

 …

0x780da4dc

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
780da4dc: 

 push ebp

 mov ebp, esp

 sub esp, 0x100

 …

 mov eax, [ebp+8]

 …

 leave

 ret

saved ebp

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
780da4dc: 

 push ebp

 mov ebp, esp

 sub esp, 0x100

 …

 mov eax, [ebp+8]

 …

 leave

 ret

ebp

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
780da4dc: 

 push ebp

 mov ebp, esp

 sub esp, 0x100

 …

 mov eax, [ebp+8]

 …

 leave

 ret

ebp

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
780da4dc: 

 push ebp

 mov ebp, esp

 sub esp, 0x100

 …

 mov eax, [ebp+8]

 …

 leave

 ret

ebp

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
6842e84f: 

 pop edi

 pop ebp

 ret

ebp

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return Chaining
6842e84f: 

 pop edi

 pop ebp

 ret

ebp

Stack G
row

th

&(pop-pop-ret)

Argument 1

Argument 2

Function 2

&(pop-pop-ret)

Argument 1

Argument 2



Return-Oriented Programming
Instead of returning to functions, 
return to instruction sequences 
followed by a return instruction

Can return into middle of existing 
instructions to simulate different 
instructions

All we need are useable byte 
sequences anywhere in executable 
memory pages

“The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”, Hovav Shacham (ACM CCS 2007)

B8 89 41 08 C3

mov eax, 0xc3084189

mov [ecx+8], eax

ret



Credit: Dr. Raid’s Girlfriend



Return-Oriented Gadgets
• Various instruction 

sequences can be combined 
to form gadgets

• Gadgets perform higher-level 
actions
– Write specific 32-bit value 

to specific memory location
– Add/sub/and/or/xor value 

at memory location with 
immediate value

– Call function in shared 
library

!"#$%&'(

add 
eax,ecx 

ret 

)*)(%"+(

,%&(
mov 

[eax],ecx 
ret 



Example Gadget

pop eax 
ret 

pop ecx 
ret 

mov 
[ecx],eax 

ret 

!"#$%&
'((%)'*"%&

+*,-%&



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Return-Oriented Write4 Gadget

684a0f4e:

 pop eax

 ret

684a2367:

 pop ecx

 ret

684a123a:

 mov [ecx], eax

 ret

0x684a0f4e

Stack G
row

th

0xdeadbeef
0x684a2367
0xfeedface
0x684a123a



Address Space Layout Randomization

Almost all exploits require hard-coding memory addresses

If those addresses are impossible to predict, those exploits would 
not be possible

ASLR moves around code (executable and libraries), data (stacks, 
heaps, and other memory regions)

Windows Vista randomizes DLLs at boot-time, everything else at 
run-time



Bypassing ASLR

Poor entropy

Sometimes the randomization isn’t random enough or the 
attacker may try as many times as needed

Memory address disclosure

Some vulnerabilities or other tricks can be used to reveal 
memory addresses in the target process

One address may be enough to build your exploit



IE7 .NET User Control ASLR Bypass

Internet Explorer allowed .NET user controls to be loaded into 
the IE process

.NET assemblies are PE executables and DLLs

The loader would honor the preferred load address of the DLL

DLL can specify permissions of memory segments

We can load chosen data at a chosen location with chosen memory 
permissions (RWX)


