Dan Guido — Fall 2010

FUZZING

P AT IANM

Objective

1. Whatis Fuzzing?
= Prosand Cons
= What does Fuzzing Look Like?
° Who Fuzzes?

2. Types of Fuzzing

What is Fuzzing?

Vuln Researcher’s Toolbox

= Source Code Review
= Great coverage
= Highly complex
= Not always an option

= Binary Auditing

© Decent coverage

- Highly complex (specialized skillset)

| SNOW

= You just banged on the keyboard, right?

= User: AAAAAAAAAAA
= Password: ihateyoudanAAAAAAA....

= Reversing might have been too slow
= The attack surface was easily exposed
= You knew when exceptions occurred (crash)

What 1s Fuzzing?

= "An automated method for discovering faults

in software by providing unexpected input and
monitoring for exceptions.” — Fuzzing

= You already know how to fuzz!

= We are going to automate your manual efforts

Fuzzing Goals

= Aims to be simple and effective

= Test exposed attack surface for boundary
conditions

= Most effective against languages that use
unmanaged memory and sometimes the web

Pros and Cons

= Availability — when can you not fuzz really?

= Reproducibility — write to target a protocol,
fuzz every server that implements it

= Simplicity — doesn’t require strong knowledge
of app internals, though it can help

Pros and Cons (cont)

= Coverage —how much did you really get?
= Fuzzing shouldn't replace other types of testing

* |ntelligence - fuzzing works best where vulns
are caused by one vector by themselves

= Multi-stage vulns aren’t well suited for fuzzing

What does Fuzzing look like?

= cat/dev/urandom | nc —vv target port
= Yes, this really works sometimes

» Model an ASCII network protocol
= Find all verbs in FTP, test arg parsing on server

= Take a pcap, modify every byte, replay
- Why not try every value for every byte?

Who took Statistics?

= How many test cases do you need to
completely bruteforce one 4k file?

= Bytesin a Kilobyte * 4
o Possible ASCII characters

" (4 * (2024 ** 2)) ** 256 = LOL

= This is why we only test boundary conditions

Limitations Thought Exercise
= Access Control Flaws
= Poor Design Logic

= Backdoors

= Memory Corruption

Who Fuzzes?’?

s Software Vendors

= In-house or out-sourced to security companies
= MS SDL tools have been published

= Hackers

= Fuzzers are an effective way to find oday
= Laurent Gaffie and Charlie Miller’s entire careers

= Academia

Types of Fuzzing

Random (dumbest)

* Fling totally random data at the target
= cat /dev/urandom | nc —vv target port
= Early environment variable fuzzers

= How do you identify the test case that
crashed your app?

Mutational (dumb)

= Collect samples and modify
= MiniFuzz, FileFuzz, SPIKEfile

= Things to remember:

= Less setup time, but effectiveness depends on
samples

= Works best on file formats and simple clear text
protocols

Generational (smart)

= Model what the application should process
= Simple: auxiliary/fuzzers/ftp/client_ftp in Metasploit
= Complex: Peach, Autodafe, SPIKE, Sulley

= Things to remember:

= More setup time, but tends to yield better results
= Works best with complex network protocols, APIs

= Dilemma: If you spend so much time modeling,

Evolutionary (smarter)

= Connect a smartfuzzer to a binary
instrumentation framework for feedback

= Modify inputs based on coverage

= Open area of research if you're interested!

Effective Fuzzing

Fuzzing Phases

= Approach depends on your objective
= Are you going for coverage or exploits?
= Type of app and format being fuzzed

1. ldentify the Target

= Want to re-use your fuzzer? Pick a common
fileformat or a common library.

- Look at past history of vulns in the target

Fuzzing Phases

2. ldentify Inputs
= Enumerate input vectors, not just the obvious ones
= Filenames, reg keys, env variables, headers, etc

3. Generate Fuzz Data
= Mutate or generate?

4. Execute Fuzz Data

Fuzzing Phases

5. Monitor for Exceptions
= What does an exception look like?
= Ensure you can pinpoint the cause of a crash

6. Determine Exploitability
> No one likes to talk about it, but this is the hardest
= Usually a manual process, crash binning can help

Resources

= The course website
o http://pentest.cryptocity.net/fuzzing

» Fuzzing: Brute Force Vulnerability Discovery
= http://fuzzing.org

