
The Evolving Art of Fuzzing

DEFCON 14
August 5th 2006

Jared DeMott
Vulnerability Researcher - Applied Security, Inc.
(jdemott@appliedsec.com, www.appliedsec.com)

Dr. Richard Enbody
Associate Professor - Michigan State University
(enbody@cse.msu.edu, www.cse.msu.edu/~enbody/)

Agenda
1.Definitions and Motivation

● Who/what/where/why/when
2.Current state of fuzzing

● The various types of fuzzers and how they work
3.Kung FU with a context-free grammar fuzzer

● Widely used and sold - Codenomicon
4.Serious Kung FU with a generic fuzzer

● See GPF or Autodafe
5.Web and File Fuzzing

● SPI Fuzzer
6.Fuzzing Metrics

● Formal study of fuzzing
7.Advancing the state of fuzzing

● Adding to generic fuzzers, and Genetic Algorithms

Background

● Section I
– Define Fuzzing
– Define Software Testing
– Figure out how the two fit together
– Understand the usefulness of fuzzing

● A practical automated test tool that finds bugs

Definition

● “Fuzzing — a highly automated testing technique
that covers numerous boundary cases using
invalid data (from files, network protocols, API
calls, and other targets) as application input to
better ensure the absence of exploitable
vulnerabilities. From modem applications’
tendency to fail due to random input caused by
line noise on “fuzzy” telephone lines.” - Oehlert

● See provided paper for other useful fuzzing
terms

Fake Clear Text Protocol

[Client]-> “user jared\r\n”
“user OK. Provide pass.\r\n” <-[Server]

[Client]-> “pass mylamepasswd\r\n”
“Login successful. Proceed.\r\n” <-[Server]

[Client]-> “list file 1\r\n”
...

Simple Fuzz Example

Consider a fuzzer that randomizes the test type, position,
and protocol leg in which to place the attack:

[Client]-> “us<50000 \xff’s>er jared\r\n”
-------------------loop 1------------------------
[Client]-> “user ja<12 %n’s>red\r\n”

“user Ok. Provide pass.\r\n” <-[Server]
[Client]-> “\x34\x56\x12\x…\r\n”
-------------------loop 2------------------------
[Client]-> “user ja<1342 \x00’s>red\r\n”
-------------------loop 3------------------------
[Client]-> “user jared\r\n”

“user Ok. Provide pass.\r\n” <-[Server]
[Client]-> “\x04\x98\xbb\x…\r\n”
-------------------loop 4------------------------

Other Terms you may have
Heard

● Monkey, Stochastic, boundary or stress testing
are all a little different (or not) depending on who
you talk to. Some have even used the term fault
injection to mean fuzzing, but typically that
means something else. For uniformity fuzzing is
the term we will use.

Software Testing

● Software testing can be
– Difficult, tedious, and labour intensive
– Poorly integrated into the development process
– Abused and/or misunderstood

● Software testing is expensive and time-
consuming
– Typically at least 50% of initial development costs

● Primary/only method for gaining confidence in
the correctness of software (pre-release)

● In Short, testing is a hard problem

Software Testing

● Functional Testing (Dynamic) (Black-box)
– Executes the software
– Tends to focus on final requirements, system stability,

and exposed interfaces
● Pro: Real code compiled for real environment. No false

positives.
● Con: Complexity of search space (infinite). Poor test case

creation (could test the same path over and over).
● Structural Testing (Static) (White-box)

– Symbolically execute software
– Tends to focus on design and code correctness

● Pro: Can be done early in the unit phase. Once found,
problems are easier to troubleshoot. Can test code.

● Con: Requires source code. Manual reviews are difficult.
● For both, commercial tools are expensive

Where does Fuzzing fit into
Testing?

● This question will be answered differently by
each company. But in general we have:
– Formal Methods in Software Engineering

● Software Quality Assurance
– Software testing

● QA people and SR people could learn from each other
● Fuzzing is one of many software testing

techniques
– Many other types of testing

● Grey-box is a combination common to security testing
● Other testing types include: Unit, integration, system,

end-to-end, performance, usability, functional, load,
acceptance, etc.

Is Fuzzing “better”?

● Do fuzzers replace source code audits,
reverse engineering, or other software quality
assurance processes?
– No. Fuzzing compliments, supplements, or

helps complete all those activities, but it does not
replace anything.

– No one software testing technique will ever have
the final word on overall software quality

● Fuzzing is best against C/C++ apps, if we're
looking for memory corruption type bugs.
– Not so great for finding design errors, like super

secret back door, application bypass, etc.

So, how good are Fuzzers?

● From Barton Miller in 1990 to Martin
Vuagnoux in 2006 (16 years), fuzzers have
performed surprisingly well. Fuzzers have
traditionally been “quick and dirty” without
much formal study.
– Some have begun to change that: HDM, Burns,

Sparks/Embleton/Cunningham, Vuagnoux,
Miller, Aitel, PROTOS folks, Ohelert, Sprundel,
Sutton/Greene, commercial companies, and
many more.

● We too are studying fuzzers more formally

Who builds Fuzzers?

● Software companies
– Proactive security testing

● Vulnerability analysts
– Security research
– Income

● Fuzzer companies
– Income

● Academia
– Advancements in the field

● Hax0rs
– Who knows why -- phun, profit, hobby, or

because they can! :)

Why are Fuzzers built?

● Because they find bugs
– They are built to find bugs in a way that is

different from traditional testing methods.
Software testing has been part of computing
since the inception of computers and has been
researched intensively, but still bugs persist.

How Fuzzers Work

● Section II
– Various types of fuzzers and how they create

semi-valid data

What do Fuzzers do?

● Fuzzers deliver semi-valid data to the target
(software under test) and optionally
determine if a fault has occurred.
– Automated tool that functionally tests a program
– The source of this data and how it becomes

semi-invalid is important
● Attack heuristics such as integer and string bounds

checking, format characters, out of order commands,
bad delimiters or line endings, etc.

– attack surface
– fuzz(source)->attack surface<-debugger

Why do Fuzzers work?

● A general goal to break software
– Traditional testing focuses on proper

functionality, not security testing. Errors of
omission are an interesting example. (bounds check)

● Code Coverage
– A false sense of security. Coverage tells us

something, but not the complete story. Fuzzers
try the “right” data.

● Gap Coverage
– Researcher's testing tools/techniques different

from creators or those used before general
release.

Fuzzer Types
● Generation

– Full internal description of protocol, one-for-one,
less total but special tests, could achieve better
coverage, possibly new effort for each protocol

● Mutation
– Capture/replay file (can be modified), generic,

more up front effort but rapid fuzzing of most
protocols, heuristics expand each project

● Fuzzing frameworks and fuzzer scripts
– Spike, peach, etc. Facilitate the rapid creation of

block based fuzzers.
● Pure random stream generators

– Old school, but have still found bugs

Creating semi-valid data

● Test Cases
– Test tools for sale were this, but capture/replay

fuzzers are now on the market as well.
● Cyclic

– Deterministic runs
● 1 to 10000 bytes inserted in each position on each

line/leg incremented by 1 byte (0x00-0xff)
● Random

– Infinite runtime
● Library

– List of attack heuristics “inserted” for each
“variable”

● Combination of some or all (like GPF)

What is intelligent Fuzzing?
● Notion of randomness (dumbness) and

protocol specific knowledge (intelligence)
– Purely random data has found a few bugs in the

past but will likely get dropped really fast really
often.

– Too much intelligence can be expensive
● Could also lead to some of the same poor

assumptions coders make (that supplied data will
conform to the approved RFC or standard).

Which Fuzzer is best?

● No published research has been done
– Depends on protocol/application, project,

experience of testers, time, budget, available
tools, etc.

– Pros/cons
● generation/generic, dumb/intelligent,

randomness/lists, logs/debugger, in-
house/freeware/commercial fuzzer, etc.

– This question would make an excellent research
project

Context-Free Grammar Fuzzers

● Section III
– CFG fuzzers are one possibility for a generation

fuzzer
● Use the Oulu University Secure Programming Group's

PROTOS as an example

What is a Context-Free
Grammar (CFG)?

● A formal grammar in which every production
rule is of the form
– “V → w, where V is a non-terminal symbol and w is a

string consisting of terminals and/or non-terminals.
The term "context-free" comes from the fact that the
non-terminal V can always be replaced by w,
regardless of the context in which it occurs. A formal
language is context-free if there is a context-free
grammar that generates it.” - Wikipedia

● Backus-Naur Form (BNF) is the most
common notation to express context-free
grammars.
– Regular expressions is another CFG example

CFG Example

● CFGs are generation fuzzers, since a
complete description of the protocol is
required
– More likely a deterministic runtime

● Could be infinite
– Add randomness to tests, and wrap with a while(1)

● The PROTOS and Codenomicon folks use
CFG
– See Rauli Kaksonen, “A Functional Method for

Assessing Protocol Implementation Security”
– Also

● ee.oulu.fi/research/ouspg/protos/analysis/WP2000-robustness/

CFG Example
<transfer> = <read-transfer> | <write-transfer>
<read-trasfer> = !up<RRQ> <reads>
<reads> = {!down<BLOCK> !up<ACK>} !down<LAST-

BLOCK> !up<ACK>

<RRQ> ::= (0x00 0x01) <FILE-NAME> <MODE>
<BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 512 x

<OCTET>
<LAST-BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 0..511

{ <OCTET> }
<ACK> ::= (0x00 0x05) <BLOCK-NUMBER>

<MODE> ::= "octet" 0x00 | "netascii" 0x00
<FILE-NAME> ::= { <CHARACTER> } 0x00
<CHARACTER> ::= 0x01 - 0x7f
<OCTET> ::= 0x00 - 0xff

CFG Example

● PROTOS
1.Round-up of interfaces, which the software uses to get input,

especially interfaces to external systems.
2.Specification of protocols used by the tested interfaces. One

specification will do if multiple products implementing the
same protocol are being tested.

3.Execution of tests.
4.Inspection and verification of test results.

➔ Vulnerability testing has same limitations as syntax testing
1.The tested software may behave completely inappropriately

according to specifications, even if it has passed all tests.
2.Vulnerability testing is only likely to reveal errors in software

implementation, as specification and design errors require
complex test-cases with a specific sequence of events and
conditions.

3.Not everything can be monitored (this applies to all software
testing). The ways to compromise security are unlimited
whereas we can only monitor limited aspects of behavior

CFG Example

● PROTOS
– Wide use (of any fixed tool) is likely to cause a

pesticide-paradox: a software product which is
tested will become immune to it.

● Plan to make PROTOS more sophisticated and
therefore expose more subtle vulnerabilities

● There are always vulnerabilities not discovered
● Baseline:

– Products below the baseline are insecure.
– Products above the baseline do not contain the (trivial)

vulnerabilities searched by the test-tool.

Generic Fuzzers

● Section IV
– Our current vision for a General Purpose Fuzzer

● GPF and Autodafe do much of what I'll mention

Kung FU with a Generic Fuzzer

● Automatic Protocol Detection
– Capture valid session
– Convert to neutral format

● Manual modification
– Plug-in capable for complex protocols

● Manipulate received data
– Can easily fuzz in server or client direction

● Tokenize
– Strings, binary data, length fields

● Automatically detect and associate with known attack
heuristics

● Strong Attack Heuristics

Kung FU with a Generic Fuzzer

● Intelligent randomness
– Very little research has been done on how/when

to apply attack heuristics if done in a random
manner

● Correct weights could be very important in searching
for 2nd generation bugs like uninitialized stack or heap
bugs.

● Remote Debugging
– Real time statistics, dynamic weighting, and fault

detection
● Distributed Fuzzing

– Fuzzers => Fuzzies
● If many semi-random sessions w/out remote

debugging, could be difficult to determine fault data

Web and File Fuzzing

● Section V
– Why is HTTP special compared to FTP, SMTP,

POP3, IMAP, etc?
– File fuzzing is also a bit different than standard

network server/client testing.

Web Fuzzing
● Security testing of HTTP applications is much

different than traditional network applications
– It's not all that likely that you'll find a new Apache

or IIS bug, in the HTTP protocol.
– It's very common to find a file inclusion or other

(PHP, ASP, etc) bug in a web application that
runs on top of Apache or IIS.

– We certainly can and should fuzz HTTP, but
once that's done we need to turn to the less well
known (and thus less tested) applications.

– SPI Dynamics has a useful tool called SPI
Fuzzer.

● Looking at return data such as HTTP error codes.

File Fuzzing

● Good talk/tools released last year at
BlackHat by iDefense (Sutton/Green).
– You can get the goods off their website

● Traditionally files were not considered a
security issue because they are not
executable
– But they are input to an executable! :)

● Could fuzz via mutation or generation to
create semi-valid files
– Deliver files to local application
– Monitor application for exceptions

Fuzzing Metrics

● Section VI
– All six slides loosely quote Martin Vuagnoux

● He's the first to bound fuzzing with a meaningful
complexity

Fuzzing Metrics

● Potential Space of Inputs
– The cardinality of the potential space of inputs

defines the complexity of fault injectors: fuzzers
basically substitute variables for smaller, bigger and
malformed strings or values. By using a random
character string generator, Fuzz (by Miller) owns an
infinite potential space of inputs. In order to reduce
the complexity, most advanced fuzzers combine
three techniques:

● Partial description of protocols. In order to omit useless
tests.

● Block-Based protocols analysis. This technique allows a
recalculate on length fields after substituting data.

● Library of substituted strings or values.

Fuzzing Metrics
● The complexity of Autodafe is L*F

– L = number of substituted strings or values
● Using a library of finite substituted strings or values

drastically reduces the size of the potential space of inputs.
E.g. in order to highlight format string bugs, only a few
character strings are tested, containing all the interpreted
sequences.

● L should be “dozens of thousands”.
● Built up as new attacks are discovered

– F = number of fuzzed variables
● These are the parameters (data) sent to the attack

surface. In general, the RFC helps us count these. A
partial set can be captured live.

● Arranging or reducing will decrease runtime

Fuzzing Metrics

● Weighting Attacks with Markers Technique
– Removing even one input in F is profitable
– Use a tracer/debugger
– Determine which variables get consumed by

dangerous functions
● printf, vprintf, vsprintf, wprintf, vwprintf, vswprintf,

sprintf, swprintf, fprintf, fwprintf, getenv, strcat, strncat,
strcpy, strncpy, stpcpy, memcpy, memccpy, bcopy,
memmove, gets, system, popen, scanf, sscanf,
fscanf, vfscanf, vsscanf, realpath, fgets, etc.

– Fuzz such variables first
● This orders the complexity, making the fuzzer run that

much more efficient

Advancing the Art

● Section VII
– A peek at our future research

Advancing Fuzzing
● “Substituting variables with random values is

irrelevant.” - Vuagnoux
– It will force the runtime toward the input space

(infinite)
● But is this always a bad thing? Couldn't it find flaws that

libraries miss? How were buffer overflows first
discovered? What about 2nd generation bugs?

● Can we find/define a good stop point with a near infinite
input space?

– Lets use both approaches (no I'm not a politician)
● If the list attack fails we move on to a more unbounded

attack.
– Variable number of sessions, crazy states, heavily randomized

data, clustered or out of order commands, etc.
● Genetic Algorithms

– Sounds crazy doesn't it? (Sparks/Embleton/Cunningham
gave me a head start on my research this year!)

Discussion Time

● GPF demo – a few bugs in dovecot
● Love to chat:

– What defines a good fuzzer?
– How long should it run?
– How else, what else could we fuzz?

● Virtual OS or hardware?
– Should fuzzer and vulnerability scanner companies blend the

two technologies?
● For more info/fun with fuzzing:

– Run cmdline, ikefuzz, and GPF on the DEFCON CD
● All three have found bugs (chk web for new versions)

– Read fuzzing paper (also on CD)
– Stay tuned...we're going to keep moving forward with

fuzzing research! :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

