
The Advantages of Block-Based Protocol Analysis for
Security Testing

Dave Aitel
Immunity,Inc.

111 E. 7th St. Suite 64, NY NY 10009, USA
dave@immunitysec.com

February, 4 2002

Abstract. This paper describes a effective method
for black-box testing of unknown or arbitrarily
complex network protocols for common problems
relating to the security of a program or system. By
introducing a block-based method for taking
advantage of all known factors in a network
protocol, and delimiting the effect of all unknown
factors, the potential space of inputs to a program
can be reduced intelligently by a tester,
compensating for incomplete knowledge of the
target's implementation or design.

Introduction

Traditionally black-box testing of network protocols has been performed by
creating a rough client of the network protocol to be tested and then manually
permuting the protocol in ways the tester thinks will cause a software fault in
the target system. This is inefficient in several ways:

� If the network protocol is defined by both server and client API's or the
tester has source for the client, it is likely that these API's or source codes
will influence the assumptions made by the tester, which will then be in line
with the assumptions made by the developers, causing gaps in testing

� Even given complete knowledge of the protocol, creating a client for a
protocol can be a large project, and that client is rarely portable to other
protocols, even of a similar nature

� Many times testers have only limited knowledge of the protocols under
attack or limited knowledge in the ways that the protocol may break

In addition, gray-box testing, where a program is instrumented and its data
flow is analyzed while it is being stressed by network input, is difficult to both
scale to arbitrarily complex systems and port to other architectures. In fact,
setting up more than a minimal test frame for a program can change a test's
results in ways that cloak vulnerabilities, by introducing latency or modification

of the program's internal memory state.

To address these weaknesses, the author developed and tested a framework
for simulating network protocol clients and automating black-box testing
based on that framework. This framework, implemented as a C API and a C-
like scripting language, allows a black-box tester to leverage any existing
knowledge of a protocol, or similar protocols, while testing. It also allows both
manual and programmatic exploration of the potential space of network
inputs, which gives the tester a more efficient way to find software faults, such
as buffer overflows, integer overflows, or memory allocation errors.

The need for flattened protocol stacks for fuzzing

The history of black-box testing is strewn with examples of Perl scripts
designed to replicate some form of network traffic, replacing a small string
with a larger string in order to overflow a buffer. However, when attempting to
expand this technique into a more complex application protocol, consisting of
several layers, the sizes of each layer become correlated in away that
precludes a simple modification of a network packet. In effect, today's network
protocols depend themselves on other application layer protocols, such as
HTTP.

Any protocol can be decomposed into length fields and data fields, but as the
tester attempts to construct their test script, they find that knowing the length
of all higher layer protocols is necessary before constructing the lower layer
data packets. Failing to do so will result in lower layer protocols rejecting the
test attempt.

As an example, if a tester wants to send a long string into a particular web
application, it is not enough to simply modify an existing request (a POST) by
replacing a variable with a longer string. The tester must also update the
Content-Length: field in the HTTP header. For more complex protocols, there
will be many length fields that need to be updated, some of them being
calculations based on the lengths of the encapsulated protocols. Blind
fuzzing, that is, sending purely random and unformatted data, is thus largely a
waste of time.

However, creating a custom programmatic function to calculate each length is
onerous. In addition, the creation of a functional or object oriented description
of each protocol does not lead itself to reuse or manual modification. There is
thus a need for a framework that isolates the layers below a protocol from
having to know the components or component lengths of any of the upper
layer protocols. For manual modification, it is best if the protocol is treated
simply as a long string of bytes, rather than a nested egg-within-an-egg of
protocols. The ability to flatten out a protocol stack in this way while

automatically calculating lengths is the main effect of the author's SPIKE
framework.

Creation of the SPIKE Framework

The data structure that provides for block—based protocol modeling, known
as a SPIKE, is a simple list of structures which contain block size information
and a queue of bytes. Both binary data and size placeholders are pushed
onto the queue. Whenever a size placeholder is pushed, a new block-size
structure is allocated and given a unique name. For example, examine the
simple SPIKE script below:

s_bl ock_si ze_bi nar y_bi gendi an_wor d(“ somepacket dat a”) ;
s_bl ock_st ar t (“ somepacket dat a”)
s_bi nar y(“ 01020304”) ;
s_bl ock_end(“ somepacket dat a”) ;

This script first pushes four null bytes onto the SPIKE's queue, but also
allocates a block listener named “somepacketdata” and sets the internal state
of that block listener to be a big endian word. The script then starts the block
“somepacketdata” which searches all the available block listeners for any
looking for the string “somepacketdata” and updates their internal “start”
pointers. Then 4 bytes (0x01020304) are pushed onto the queue, and finally
the block is ended, at which point any listeners' sizes are finalized, and the
initial four nulls (a big endian word is four bytes long) are filled in with the
proper value.

This SPIKE script snippet is somewhat simplistic, but the power of SPIKE
directly derives from its ability to isolate the lower layer protocols (HTTP, or
NetBIOS, for example) from the higher level protocols (such as XML-RPC or
SMB). A SPIKE script, unlike a traditional fuzzing platform, does not need to
pre-construct all higher-layer protocols in order to determine sizes. Instead,
the size calculations themselves are deferred until blocks are closed. This
prevents any one layer from having to know the internals of any other layer.
Blocks can be nested or intertwined in any way, depending on the network
protocol being modeled.

Fragmentation of packets is one area where this technique becomes
inappropriate, and these cases are handled specially. But even in these
cases, which are typically complex RPC protocols, a SPIKE is used to
construct each fragment (a PDU in Microsoft RPC is a good example) and
encapsulate arbitrary numbers of data types within the fragment.

Representing Data Types with SPIKE

Because most network protocols need to marshall and unmarshall the same
kinds of data, they have evolved to do it in roughly the same ways. There are
many examples of strings being marshalled with a size in big endian word
format, then the ASCII string, then a null byte, then some pad data to make
the string data structure aligned on a four-byte boundary. Each protocol
designer typically uses their own code to encode this data type, but users of
SPIKE use one generic function call, which may internally use block-based
code to generate the data type, if the data type is complex.

As SPIKE matures, it's collection of encoding routines becomes more and
more complete. A Unicode string sent over the wire by any of Microsoft's
protocol implementations is sent in a similar format, so once the work done to
create a valid SMB packet is done, the data types created work naturally with
Microsoft's implementation of DCE-RPC.

Of course, even raw primitives are quite useful, such as creating a halfword in
Intel-byte-order or big endian order (regardless of the SPIKE host's platform)
or understanding different forms of hexadecimal formats (“0x0001” and “0001”
and “00 01” are all parsed correctly by s_binary(), allowing a tester to cut-and-
paste from almost any source.)

Automating Fuzzing

Once a protocol is represented in a linear state, certain parts within it are
marked as variables. This is typically done by simply appending _variable() to
the function name.

For example:
s_string_variable(“POST”);
s_binary_bigendian_word_variable(0x01);
s_unistring_variable(“\\PIPE\\”);

The SPIKE script fragment above marks each of these date types as a
variable. Each SPIKE data structure keeps track of which variable it is now
fuzzing. A simple loop iterating over the SPIKE allows it to change first the
POST into a set of long strings, then the 0x01 into a set of integers known to
trigger integer overflows, then the Unicode string into a set of long strings.
Each “long” string is taken from a global set of strings known to cause
problems in various protocols. As new classes of attack are discovered,
strings are added to this global list.

It should be noted that size directives also can be used as integer variables.
Because the protocol has been flattened out, there is a simple linear

progression through both the normal variables and size variables.

Measurable Results

It should be noted that SPIKE has been under development for over a year,
and during that time has discovered literally dozens of new vulnerabilities,
some of which have been DCE-RPC vulnerabilities. This is important in
retrospect only because the efficacy of a block-based strategy for protocol
modeling and fuzzing is hard to measure. It may be measurable only
subjectively, in terms of the “ease-of-use” aspects for creating a new protocol
modeler, and finding a new vulnerability. What few concrete measurements
can be taken are the result of finding remote vulnerabilities in services which
are known to be vulnerable, but for which the particulars of the vulnerabilities
are unknown. The abilities of the fuzzing framework can then be tested as the
time-spent, versus ability to discover the vulnerability. In many cases, more
than one vulnerability is discovered.

For the purposes of this paper, a DCE-RPC over named pipes fuzzer was
built into SPIKE version 2.8 to attempt to locate the RPC Locator exploit
(described in MS-03-01). Building Netbios+SMB+DCE-RPC into SPIKE was
simplified by the fact that SPIKE 2.7 already had incorporated some DCE-
RPC functionality. The process of building a new protocol into SPIKE typically
incorporates any knowledge about the protocol that can be gleaned from
common protocol dissectors such as Ethereal, and in this case, both Netmon
and Ethereal have quite full descriptions of SMB and DCE-RPC.

Nevertheless, it is SPIKE's unique block data structure that allowed a
reasonably complete DCE-RPC over SMB over Netbios stack to be
completed within one day, and debugged over the next few days. SPIKE's
RPC fuzzers now include (as of version 2.8) a SunRPC fuzzer, a DCE-RPC
fuzzer, and a DCE-RPC over named pipes fuzzer. Each of these works in a
similar fashion: they bind to and then communicate with a remote RPC
service, sending random numbers of random but valid data types as the
parameters to a function call. These data types are chosen to both pass
through any demarshalling routines on the remote end, and attempt to
overflow the function handler.

For example, in hindsight, the Microsoft RPC Locator service will properly
demarshall the following SPIKE code and overflow:

s_intelword(0x03); /*must be 0x03*/
s_intelword(rand()); /*can be anything*/
//next a long string in the form of “/.../<string>/”
s_msunistring(“/.../AAAAAAAAA......AAAA/”);
for (i=0; i<13; i++)

 s_intelword(0x00);
/* the final padding words can be anything, but zeros
work best.*/

Most programs running DCE-RPC in Windows 2000 or later are compiled with
a specific option which will reject any request that does not demarshall
correctly. Thus, is it imperative first to pass the demarshalling tests, and then
to pass any application-layer tests, before finally reaching vulnerable code
with a long string. s_msunistring() handles the four-byte alignment of the
Unicode string automatically.

SPIKE's DCE-RPC fuzzer includes fifteen data types which it will randomly
append as parameters. The intel-ordered integer values of 1,2,3 each merits
their own slot in the random variable switch statement, as does one, two, and
three words of zeros. s_msunistring(s_get_random_fuzzstring());
is also used to pick a random string from the entire global set of fuzz strings
and then place it in the data as a Microsoft Unicode string type. If this string is
of the proper format (“/.../AAAAAA”) and all the other variables are correct,
and there are no extra variables, then the Locator service will process it and
overflow. Finding the proper format to trigger an overflow is a matter of
reading any available documentation on the service being fuzzed, and adding
any interesting strings from that documentation to the global fuzz string list.
The strings “/.../” and “/.:/” are often present in documentation and examples
relating to the locator service. For other information about the functionality of a
given RPC service, it is often only necessary to view a function's definition. In
the case of the Locator service, the RpcNsStringBindingLookupBegin()
function takes in roughly the arguments the vulnerability needs to demarshall.

There are 580 different strings in the SPIKE global fuzz string set. On
average, once in every 170 tests, the string is actually processed, and so it
will take an average of 98600 tests (or 1.5 hours), using no prior knowledge
about the function's arguments (other than that “/.../AA...” or “/.:/A...” might
cause an overflow), to find the Locator overflow. In fact, SPIKE was
successful in finding two similar vulnerabilities within the Locator service using
this methodology, and additional access violation errors not yet reported.

The time spent trying to pass the demarshalling tests can be drastically
reduced by hand-coding valid arguments to the RPC function. Valid
arguments can be found using standard reverse engineering, examining the
exceptions thrown by the application (0x6F7 is thrown on an invalidly
marshalled RPC packet) or by using Muddle, which will process an RPC
Service's executable to return an IDL file. But in some cases Muddle does not
work against an RPC service, and a blind approach is necessary or more
expedient than a lengthy reverse engineering process.

Other Vulnerabilities Found

During the process of building the DCE-RPC over named pipe fuzzer for
SPIKE 2.8, the author encountered several bugs within the Windows 2000
DCE-RPC stack. The first bug was that occasionally, when stressed, the
DCE-RPC stack would forward calls to invalid interfaces or interface versions
to a listening service. This would then crash the service with a NULL-
dereference. In the case that the service was a necessary system service,
such as lsass.exe, the system would then reboot. This is also reported as
being exploitable in many circumstances as a local root against Windows
2000. When system services such as lsass.exe crash, they orphan named
pipes which can then be created by a local attacker, allowing them to
ImpersonateNamedPipeClient() when they are connected to by a privileged
process, resulting in root compromise. It may be possible to use this
technique to bypass authentication or exploit the system in other ways,
although this has not yet been explored.

Additionally, a severe kernel memory leak was found when Netbios
continuation packets were received by the Windows 2000 kernel. This allowed
for a remote Denial of Service against a target machine. Although the
machine did not itself completely run out of non-paged pool, it did stop
servicing SMB requests, which has the effect of fatally disabling COM
services.

Conclusion

Although static analysis or white-box analysis is the subject of much of the
recent security research, black-box testing still produces the majority of the
exploitable real-world vulnerabilities. For a given example security audit,
SPIKE's block-based protocol modeling and fuzzing strategy has proven itself
to be effective at finding exploitable vulnerabilities within a reasonable amount
of time, and with a reasonable amount of prior knowledge. Software vendors
and independent security consulting companies would be wise to extend
SPIKE or write customized SPIKE scripts for exposed network protocols
which have security implications. For a low investment of time, black-box
testing, and SPIKE in particular, have consistently demonstrated themselves
to be highly rewarding.

References

1. SPIKE development homepage. Http://www.immunitysec.com/spike.html
2. Muddle, a tool for reading MIDL information from binaries by Matt

Chapman. Http://www.cse.unsw.edu.au/~matthewc/muddle/
3. Previous local root vulnerability against Windows 2000 based on killing

lsass.exe. http://www.guninski.com/dr07.html and http://www.guninski.com/
pipe3.cpp

