
Fuzzing 101

NYU/Poly.edu

October 23, 2008

Mike Zusman

Hi, I’m Mike Zusman

Past:
•  Web Application Developer
•  Escalation Engineer @ Whale Communications, Inc

(a Microsoft subsidiary)
•  Application Security Team @ ADP, Inc
•  Spoken at Industry Events:

OWASP, BlackHat
(and a cameo at DEFCON)

Current:
•  Senior Consultant

@ Intrepidus Group, Inc.

Intrepidus Group, Inc. © 2007 3

  You already know how to fuzz 
  This class will teach you:

  History of fuzzing
  Fuzzing Methodologies
  About Fuzzing tools you can use

  At the end of this class you:
  Will have written your own fuzzer
  Found some cool (hopefully exploitable)

bugs

Great Expectations

Intrepidus Group, Inc. © 2007 4

  Fun entertaining lectures by me
  Lectures contain content from the

“book” and my own experience.
  Homework

The Approach

Michael Sutton
Adam Greene
Pedram Amini
Forward by HD Moore

Intrepidus Group, Inc. © 2007 5

  HAVE FUN!
  When the weathers too bad, or my wife

won’t let me go real “fishing”, I go fuzzing
instead!

The Spirit

Intrepidus Group, Inc. © 2007 6

"Fuzzing is the process of sending
intentionally invalid data to a product in
the hopes of triggering an error
condition or fault. These error conditions
can lead to exploitable vulnerabilities.“

-  HD Moore (from
Fuzzing)

What exactly is fuzzing?

Intrepidus Group, Inc. © 2007 7

“Throw sh!t at the wall and see what
sticks!“ – b3nn

What exactly is fuzzing?

Intrepidus Group, Inc. © 2007 8

"There are no rules to fuzzing.“
-  Fuzzing, the book

“There are no guarantees in fuzzing.”
- Me

What exactly is fuzzing?

Intrepidus Group, Inc. © 2007 9

  Fuzzing is not new
  it’s been named for about 20 years.

  Professor Barton Miller
  Father of Fuzzing
  Developed fuzz testing with his students at

the University of Wisconsin-Madison in
1988/89

  GOAL: improve UNIX applications

History

Intrepidus Group, Inc. © 2007 10

  Millers fuzzer was pretty basic

  It sent random strings of data to the
application

  If (CRASH||HANG) {Finding(fuzzStr);}

  Smarter fuzzers would follow…

History

Intrepidus Group, Inc. © 2007 11

  1999 brought PROTOS from University
of Oulu

History

  PROTOS began by analyzing PROTOcol
specifications

  Packets were modeled that violated the
specs

  Testing suites were designed that could
be used against multiple vendor
products

Intrepidus Group, Inc. © 2007 12

  2002
  Microsoft injects cash into PROTOS

  PROTOS members branch out and start
Codenomicon
  First Commercial Fuzzer

History

Today, Fuzzing is part of Microsoft’s SDL Process!

Intrepidus Group, Inc. © 2007 13

  SPIKE fuzzer also released in 2002
  Dave Aitel wrote it

  Where Millers fuzzer was dumb, SPIKE is a
genius
  Ability to describe data
  Built in libraries for known protocols (*RPC)
  Fuzz strings designed to make software fail

History

Intrepidus Group, Inc. © 2007 14

  2004 Browser Fuzzing
  MangleMe – Michal Zalewski

  Fuzzed HTML to find browser bugs

History

Intrepidus Group, Inc. © 2007 15

  2004 File Format Fuzzing
  Microsoft Security Bulletin MS04-028

  Buffer Overun in JPEG Processing (GDI+) Could Allow
Remote Code Execution

History

Intrepidus Group, Inc. © 2007 16

  2005 File Format Fuzzers Released
  FileFuzz, SPIKEfile, notSPIKEfile

  Michael Sutton and crew

  Then came the rain.
  "When Office 2003 shipped, we thought we'd done

some good work and that it would be a secure
product," said David LeBlanc, a senior software
development engineer with the Office team. "For the
first two years after release, it held up really well,
only two bulletins. [But] then people shifted their
tactics and started finding problems in fairly large
numbers.“ -
http://www.infoworld.com/article/07/09/21/Microsoft-developer-Fuzzing-key-to-Office-security_1.html?
DESKTOP%20SECURITY

History

Intrepidus Group, Inc. © 2007 17

  2005 More Browser Fuzzers
  Hamachi

  HD Moore, Aviv Raff
  Fuzzed Dynamic HTML

  CSSDIE
  HD Moore and crew
  Fuzzed CSS Style Sheets

History

Intrepidus Group, Inc. © 2007 18

  2006 Month of Browser Bugs
  HD Moore and crew released a browser bug every

day, with “no direct path to code execution.”
http://www.foxnews.com/story/0,2933,202547,00.html

  Controversial?
  Blogger thinks so

History

Intrepidus Group, Inc. © 2007 19

  2006 ActiveX Fuzzing
  When his car insurance went up, the GEICO caveman

started selling ActiveX 0days (just kidding)
  Too easy?

History

Intrepidus Group, Inc. © 2007 20

  2006 ActiveX Fuzzing
  COMRaider

  GUI Based
  Point and Click
  iDefense tool

  AxMan
  More complicated to use then COMRaider
  IMO, a better fuzzer

  Why so easy?
  ActiveX/COM objects have exportable typelibs that

describe all methods, interfaces, properties.

History

Intrepidus Group, Inc. © 2007 21

  2007 More Browser Fuzzing

History

Intrepidus Group, Inc. © 2007 22

  2008
  First time fuzzing is taught in a University setting?

Maybe…

History

</history>
<fuzzers>

Intrepidus Group, Inc. © 2008 23 Intrepidus Group, Inc. © 2007 23

  Sending Random Data
  Least Effective
  Unfortunately, sometimes, code is bad

enough for this to work

  Manual Protocol Mutation
  You are the fuzzer
  Time consuming, but can be accurate when

you have a hunch
  Web App Pen-Testing

Fuzzing Methods

Intrepidus Group, Inc. © 2008 24 Intrepidus Group, Inc. © 2007 24

  Mutation or Brute Force Testing
  Starts with a valid sample
  Fuzz each and every byte in the sample

  Automatic Protocol Generation Testing
  Person needs to understand the protocol
  Code is written to describe the protocol (a

“grammar”)
  Fuzzer then knows which piece to fuzz, and

which to leave alone (SPIKE)

Fuzzing Methods

Intrepidus Group, Inc. © 2008 25 Intrepidus Group, Inc. © 2007 25

  Local Fuzzer
  Lets you fuzz applications on the command

line
  To what end?

  Make sure the target has some value
(setuid)

  Environment Variable fuzzers
  Because:

Types of Fuzzers

#include <string.h>
int main (int argc, char **argv)
{

 char buffer[10];
 strcpy(buffer, getenv("HOME"));

}

Intrepidus Group, Inc. © 2008 26 Intrepidus Group, Inc. © 2008 26 Intrepidus Group, Inc. © 2007 26

  File Format Fuzzers
  Fuzz valid files
  Pass them to an executable

  Remote Fuzzers (my favorite)
  Listen on a network connects
  When client connects, fuzz them!

Types of Fuzzers

Intrepidus Group, Inc. © 2008 27 Intrepidus Group, Inc. © 2008 27 Intrepidus Group, Inc. © 2007 27

  Network Protocol Fuzzers
  The Fuzzer is the client
  Need to understand the protocol

  Simple Protocols
  Text Based
  Telnet, FTP, POP, HTTP

  Complex Protocols
  Binary Data (some ASCII)
  Complex authentication, encryption,

etc
  MSRPC (Supported by SPIKE)

Types of Fuzzers

Intrepidus Group, Inc. © 2008 28 Intrepidus Group, Inc. © 2008 28 Intrepidus Group, Inc. © 2008 28 Intrepidus Group, Inc. © 2007 28

Types of Fuzzers

</fuzzers>
<fuzzing>

Intrepidus Group, Inc. © 2008 29 Intrepidus Group, Inc. © 2008 29 Intrepidus Group, Inc. © 2008 29 Intrepidus Group, Inc. © 2007 29

1.   Identify Targets
2.  Identify Inputs
3.  Generate Fuzzed Data
4.  Execute Fuzzed Data
5.  Monitor for Exceptions
6.  Determine Exploitability

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2007 30

1. Identify Targets

Intrepidus Group, Inc. © 2008 31 Intrepidus Group, Inc. © 2008 31 Intrepidus Group, Inc. © 2008 31 Intrepidus Group, Inc. © 2007 31

1.  Target: Commercial FTP Server (WARFTP)
2.   Identify Inputs
3.  Generate Fuzzed Data
4.  Execute Fuzzed Data
5.  Monitor for Exceptions
6.  Determine Exploitability

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 32 Intrepidus Group, Inc. © 2008 32 Intrepidus Group, Inc. © 2008 32 Intrepidus Group, Inc. © 2007 32

1.  Target: Commercial FTP Server (WARFTP)
2.   Identify Inputs

•  TCP Port 21, p1, p2 (PASV or active?)
•  Commands: USER, PASS, CWD, DELE, etc
•  Special CHARs: \r\n, <space>

2. Identify Inputs

Intrepidus Group, Inc. © 2008 33 Intrepidus Group, Inc. © 2008 33 Intrepidus Group, Inc. © 2008 33 Intrepidus Group, Inc. © 2007 33

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.   Generate Fuzzed Data
USER <username>
Generation one: 1024 x A
Generation two: 2048 X A
Generation three: 4096 X String(random)
PASS <password>
Generation one: 1024 x A
Generation two: 2048 X A

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 34 Intrepidus Group, Inc. © 2008 34 Intrepidus Group, Inc. © 2008 34 Intrepidus Group, Inc. © 2007 34

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.   Execute Fuzzed Data

The Process of Fuzzing

for (int w=0; w<maxIterations; w++){
openhost();
for (int commandIndex = 0; commandIndex < commandCount; commandIndex++)
{
 userInput = commands[commandIndex].command;
 if (commands[commandIndex].argument.equals("%f")){
 //FUZZ IT
 if (AttackID != 4) {
 userInput = userInput + stringAttacks[w].replace("\r", "").replace("\n", "");
 } else {
 userInput = userInput + stringAttacks[w];
}

Intrepidus Group, Inc. © 2008 35

for (int w=0; w<maxIterations; w++){
openhost();
for (int commandIndex = 0; commandIndex < commandCount; commandIndex++)
{
 userInput = commands[commandIndex].command;
 if (commands[commandIndex].argument.equals("%f")){
 //FUZZ IT
 if (AttackID != 4) {
 userInput = userInput + stringAttacks[w].replace("\r", "").replace("\n", "");
 } else {
 userInput = userInput + stringAttacks[w];
 }
} else {
 userInput = userInput + " " + commands[commandIndex].argument;
}
userInput = userInput + "\r\n";
try {
 toServer.write(userInput.getBytes(),0,userInput.getBytes().length);
} catch (Exception e) {
 System.out.println("Connection dropped on write");
}

Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2007 36

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.  Send the Fuzzed Data to the Target (code)
5.   Monitor for Exceptions

The Process of Fuzzing

try {
 response = in.readLine();
if (!response.equals("")){
// do nothing
}
} catch (IOException e)
{
 System.out.println("ANOMALY: Connection was dropped.");
 if (AttackID != 4) System.out.println("ANOMALY: String length was " +

 stringAttacks[w].replace("\r", "").replace("\n", "").length());
}
catch (Exception e) …

Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2007 37

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.  Send the Fuzzed Data to the Target (code)
5.   Monitor for Exceptions

The Process of Fuzzing

try {
 response = in.readLine();
if (!response.equals("")){
// do nothing
}
} catch (IOException e)
{
 System.out.println("ANOMALY: Connection was dropped.");
 if (AttackID != 4) System.out.println("ANOMALY: String length was " +

 stringAttacks[w].replace("\r", "").replace("\n", "").length());
}
catch (Exception e) …

Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2007 38

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.  Send the Fuzzed Data to the Target (code)
5.  Monitor the socket for any exceptions
6.   Determine Exploitability

Depends…

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2007 39

  Determine Exploitability - Remotely
  You need to know what data you sent

  Record all fuzzed strings, making note of
exceptions

  Network Captures (Wireshark)
  Try and reproduce the scenario
  Is it a memory corruption bug?
  Is it an application logic flaw?

  Determine Exploitability – Locally
  Attach a debugger

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2007 40

  “A good fuzzer needs to allow a user to quickly
narrow down the iteration that caused the
crash.”

 – stryde_hax

  Log all fuzz attempts

  The last one before an anomaly (exception)
is the best place to start

Fuzzing Logistics

Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2007 41

  Reproducibility Challenges

  What if you are two days in on a fuzzing
exercise, and you find a flaw.

  How can you quickly reproduce the scenario
that caused the crash?

Fuzzing Logistics

<fuzzing_AX>

Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2007 42

  Target: Windows Workstations
  Inputs:

Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

  All fuzzing and fault detection is handled by
COMRaider

  COMRaider Demo

Fuzzing ActiveX Objects

Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2007 43

  Target: Windows Workstations
  Inputs:

Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

  Fuzzing is handled by AxMan, but not
detection. We need an external debugger.

  AxMan Demo

Fuzzing ActiveX Objects

Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2007 44

  Target: Windows Workstations
  Inputs:

Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

  Fuzzing is handled by AxMan, but not
detection. We need an external debugger.

  AxMan Demo

Fuzzing ActiveX Objects

