INTREPIDUS@@EHOLP

Fuzzing 101

NYU/Poly.edu
October 23, 2008

Mike Zusman




INTI:?EIDIDLJS‘::‘GF?DLJID

RRRRRRRRRRRRRRRRR

Hi, I'm Mike Zusman

Past:
«  Web Application Developer

- Escalation Engineer @ Whale Communications, Inc
( @ Microsoft subsidiary)

« Application Security Team @ ADP, Inc

« Spoken at Industry Events:
OWASP, BlackHat
(and a cameo at DEFCON)

Current:

« Senior Consultant
@ Intrepidus Group, Inc.




INTF?EIDIDLJS‘::‘GQDUID

RRRRRRRRRRRRRRRRR

Great Expectations

You already know how to fuzz ©

This class will teach you:

B History of fuzzing

B Fuzzing Methodologies

B About Fuzzing tools you can use

At the end of this class you:
B Will have written your own fuzzer

B Found some cool (hopefully exploitable)
bugs

Intrepidus Group, Inc. © 2007 3



INTREPIDUS@@EHOLP

The Approach

Fun entertaining lectures by me

Lectures contain content from the
“book” and my own experience.

Homework

Michael Sutton

Adam Greene
Pedram Amini
Forward by HD Moore

Intrepidus Group, Inc. © 2007 4



INTF?EPIDLJS‘::‘GF%CJUP

PROACTIVE SECURITY

The Spirit

HAVE FUN!

B When the weathers too bad, or my wife
won't let me go real “fishing”, I go fuzzing
instead!

[20:18:46] Access violation when reading [035C0000] - use Shift+F7/F8/F{(5
el ag Start % 2 Immunity Debug... - [P S dnter

.-'o . B <
Py ,M S -
',.,w T e N

Intrepidus Group, Inc. © 2007 5



INTREPIDUS‘::‘GQWH@

RRRRRRRRRRRRRRRRR

What exactly is fuzzing?

"Fuzzing is the process of sending
intentionally invalid data to a product in
the hopes of triggering an error
condition or fault. These error conditions
can lead to exploitable vulnerabilities."

- HD Moore (from
Fuzzing)

Intrepidus Group, Inc. © 2007 6



INTREPIDUS@@GHOLP

What exactly is fuzzing?

“Throw sh!t at the wall and see what

sticks!™ — b3nn
L e

Intrepidus Group, Inc. © 2007 7



INTREPIDUS Q@GO

What exactly is fuzzing?

"There are no rules to fuzzing."
- Fuzzing, the book

"I haven't really seen it get to the enterprise.
Today, for the most part, if you want to be
doing fuzzing you have to develop your own

apps for that."
Michael Sutton, Author and Security Evangelist,
SPI Dynamics

“There are no guarantees in fuzzing.”
- Me

Intrepidus Group, Inc. © 2007 8



INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

History

Fuzzing is not new
B it's been named for about 20 years.

Professor Barton Miller
B Father of Fuzzing

B Developed fuzz testing with his students at
the University of Wisconsin-Madison in
1988/89

B GOAL: improve UNIX applications

Intrepidus Group, Inc. © 2007 9



INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

History

Millers fuzzer was pretty basic

It sent random strings of data to the
application

If (CRASH||HANG) {Finding(fuzzStr); }

Smarter fuzzers would follow...

Intrepidus Group, Inc. © 2007 10



II\ITF?EIDIDLJS‘:“ CROUP

RRRRRRRRRRRRRRRRR

History

1999 brought PROTOS from University
of Oulu

PROTOS began by analyzing PROTOcol
specifications

Packets were modeled that violated the
specs

Testing suites were designed that could
be used against multiple vendor

products

Intrepidus Group, Inc. © 2007 11



INTI:?EIDIDLJS‘::‘GF?DLJID

RRRRRRRRRRRRRRRRR

History

2002
B Microsoft injects cash into PROTOS

PROTOS members branch out and start
Codenomicon
B First Commercial Fuzzer

Today, Fuzzing is part of Microsoft’s SDL Process!

Intrepidus Group, Inc. © 2007 12



INTI:?EIDIDLJS‘::‘GF?DLJID

RRRRRRRRRRRRRRRRR

History

[0 SPIKE fuzzer also released in 2002
B Dave Aitel wrote it

0 Where Millers fuzzer was dumb, SPIKE is a
genius
B Ability to describe data
B Built in libraries for known protocols (*RPC)
B Fuzz strings designed to make software fail

Intrepidus Group, Inc. © 2007 13



INTREPIDUS‘::‘GRDUP

PROACTIVE SECURITY

History

[0 2004 Browser Fuzzing

[0 MangleMe - Michal Zalewski
B Fuzzed HTML to find browser bugs

Attachments

input element crash (25 bytes, text/html) no flags Details
2004-10-18 13:23 PDT, Daniel Veditz

attack of the marquees (361 bytes, text/html) no flags Details
2004-10-18 13:23 PDT, Daniel Veditz

col span demo (non-crashing) (58 bytes, text/html) no flags Details
2004-10-18 13:24 PDT, Daniel Veditz

crasher not viewing as a file:/// (62.88 KB, text/html) no flags Details
2004-10-23 21:41 PDT, Keith Gable

Add an attachment (proposed patch, testcase, etc.) View All

Description From Daniel Veditz 2004-10-18 13:22:03 PDT

http://securityfocus.com/archive/1/378632/2004-10-15/2004-10-21/0

extract:
14
A gallery of quick examples I examined to locate the offending tag
(total time to find and extract them - circa 1 hour):



II\ITF?EIDIDL_JS‘:

PROACTIVE SECURITY

History

[0 2004 File Format Fuzzing

[0 Microsoft Security Bulletin MS04-028

B Buffer Overun in JPEG Processing (GDI+) Could Allow
Remote Code Execution

Nobody, and I mean NOBODY,
f gets through my firewall. | 15




INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

History

[0 2005 File Format Fuzzers Released
0 FileFuzz, SPIKEfile, notSPIKEfile

Michael Sutton and crew

[0 Then came the rain.

"When Office 2003 shipped, we thought we'd done
some good work and that it would be a secure
product,” said David LeBlanc, a senior software
development engineer with the Office team. "For the
first two years after release, it held up really well,
only two bulletins. [But] then people shifted their
tactics and started finding problems in fairly large
numbers.” -

http://www.infoworld.com/article/07/09/21/Microsoft-developer-Fuzzing-key-to-Office-security 1.html?

DESKTOP%20SECURITY

Intrepidus Group, Inc. © 2007 16



INTREPIDUS@@EHOLP

History

[0 2005 More Browser Fuzzers

[0 Hamachi
B HD Moore, Aviv Raff
B Fuzzed Dynamic HTML

[0 CSSDIE

®m HD Moore and crew
B Fuzzed CSS Style Sheets

Intrepidus Group, Inc. © 2007 17



INTREPIDUS@@EHOLP

History

[0 2006 Month of Browser Bugs

B HD Moore and crew released a browser bug every

day, with “no direct path to code execution.”
http://www.foxnews.com/story/0,2933,202547,00.html|

m Controversial?
[0 Blogger thinks so

This blog is under review due to possible Blogger Terms of
Service violations and is open to authors only

http://browserfun.blogspot.com

Intrepidus Group, Inc. © 2007 18



INTREPIDUS@@GHOLP

History

[0 2006 ActiveX Fuzzing

B When his car insurance went up, the GEICO caveman
started selling ActiveX 0Odays (just kidding)

B Too0 easy?

i

Intrepidus Group, Inc. © 2007 19




INTI:?EIDIDLJS‘::‘GF?DLJID

RRRRRRRRRRRRRRRRR

History

[0 2006 ActiveX Fuzzing

[0 COMRaider
®m GUI Based
B Point and Click
B iDefense tool

[0 AxMan
B More complicated to use then COMRaider

m IMO, a better fuzzer

[0 Why so easy?

B ActiveX/COM objects have exportable typelibs that
describe all methods, interfaces, properties.

Intrepidus Group, Inc. © 2007 20



INTPEPIDUS‘::‘GRDUP

PROACTIVE SECURITY

History

[0 2007 More Browser Fuzzing

Advisory: a specially crafted JavaScript can make
Opera execute arbitrary code

A specially crafted JavaScript can make Opera execute arbitrary code.
Severity:

Highly severe

Problem description

A virtual function call on an invalid pointer that may reference data crafted by the attacker can be
used to execute arbitrary code.

Opera's response
Opera Software has released Opera 9.23, where this issue has been fixed.
Credits

Thanks to Mozlla.org for providing their JavaScript fuzzer.

Intrepidus Group, Inc. © 2007 21



INTREPIDUS‘::‘GQWH@

RRRRRRRRRRRRRRRRR

History

0 2008
B First time fuzzing is taught in a University setting?
Maybe...

</history>
<fuzzers>

Intrepidus Group, Inc. © 2007 22



INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

Fuzzing Methods

[0 Sending Random Data
[0 Least Effective

[0 Unfortunately, sometimes, code is bad
enough for this to work

[0 Manual Protocol Mutation
[0 You are the fuzzer

[0 Time consuming, but can be accurate when
you have a hunch

[0 Web App Pen-Testing

Intrepidus Group, Inc. © 2003 23



INTREPIDUS‘::‘GQWH@

RRRRRRRRRRRRRRRRR

Fuzzing Methods

[0 Mutation or Brute Force Testing
[0 Starts with a valid sample
[0 Fuzz each and every byte in the sample

[0 Automatic Protocol Generation Testing
[0 Person needs to understand the protocol

[0 Code is written to describe the protocol ( a
“grammar”)

[0 Fuzzer then knows which piece to fuzz, and
which to leave alone (SPIKE)

Intrepidus Group, Inc. © 2003 24



INTF?EIDIDLJS‘::‘GF?DI_JID

RRRRRRRRRRRRRRRRR

Types of Fuzzers

0 Local Fuzzer

[0 Lets you fuzz applications on the command

line

[0 To what end?
[0 Make sure the target has some value

(setuid)

[0 Environment Variable fuzzers

[0 Because:

#include <string.h>
int main (int argc, char **argv)
{
char buffer[10];
strcpy (buffer, getenv ("HOME")) ;

}

Intrepidus Group, Inc. © 2003 25



INTI:?EIDIDLJS‘::‘GF?DLJID

RRRRRRRRRRRRRRRRR

Types of Fuzzers

[0 File Format Fuzzers
0 Fuzz valid files
[0 Pass them to an executable

[0 Remote Fuzzers (my favorite)
[0 Listen on a network connects
[0 When client connects, fuzz them!

Intrepidus Group, Inc. © 2003 26



INTF?EIDIDLJS‘::‘GQDUID

RRRRRRRRRRRRRRRRR

Types of Fuzzers

[0 Network Protocol Fuzzers
[0 The Fuzzer is the client
[0 Need to understand the protocol
[0 Simple Protocols
[0 Text Based
O Telnet, FTP, POP, HTTP
[0 Complex Protocols
[0 Binary Data (some ASCII)

[0 Complex authentication, encryption,
etc

[0 MSRPC (Supported by SPIKE)

Intrepidus Group, Inc. © 2003 27




INTREPIDUS‘::‘GQWH@

RRRRRRRRRRRRRRRRR

Types of Fuzzers

</fuzzers>
<fuzzing>

Intrepidus Group, Inc. © 20038 28



INTF?EIDIDLJS‘::‘GF?DI_JID

RRRRRRRRRRRRRRRRR

The Process of Fuzzing

1. Identify Targets

2. Identify Inputs

3. Generate Fuzzed Data
4. Execute Fuzzed Data

5. Monitor for Exceptions
6. Determine Exploitability

Intrepidus Group, Inc. © 20038 29



INTI:!EPIDUS‘::‘GF%DUP

PROACTIVE SECURITY

1. Identify Targets

Client (Windows)

Reverse Proxy  Microgoft IS DC/DNS/AD

c_ DMZ Subnet [/ g c Secure Network [/

I I Oracle

Commercial Apache
FTP Server Tomcat

Mainframe

Intrepidus Group, Inc. © 2008 30



INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

The Process of Fuzzing

1. Target: Commercial FTP Server (WARFTP)
2. Identify Inputs

3. Generate Fuzzed Data

Execute Fuzzed Data

Monitor for Exceptions

Determine Exploitability

o vk

Intrepidus Group, Inc. © 20038 31



INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

2. Identify Inputs

1. Target: Commercial FTP Server (WARFTP)
2. Identify Inputs

« TCP Port 21, p1, p2 (PASV or active?)
« Commands: USER, PASS, CWD, DELE, etc
- Special CHARs: \r\n, <space>

Intrepidus Group, Inc. © 20038 32



II\ITF?EIDIDL_JS‘: A CROUP

The Process of Fuzzing

1. Target: Commercial FTP Server (WARFTP)

2. Inputs: TCP21, Ftp Commands, Special Chars,
binary files

3. Generate Fuzzed Data

USER <username>

Generation one: 1024 x A

Generation two: 2048 X A

Generation three: 4096 X String(random)
PASS <password>

Generation one: 1024 x A

Generation two: 2048 X A

Intrepidus Group, Inc. © 2003 33




INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

The Process of Fuzzing

1. Target: Commercial FTP Server (WARFTP)

2. Inputs: TCP21, Ftp Commands, Special Chars,
binary files

3. Fuzzed Data: <username>, <password>
4. Execute Fuzzed Data

for (int w=0; w<maxIterations; w++) {

openhost () ;
for (int commandIndex = 0; commandIndex < commandCount; commandIndex++)
{
userInput = commands|[commandIndex] .command;
if (commands|[commandIndex] .argument.equals ("%f")) {
//FUZZ IT
if (AttackID != 4) {
userInput = userInput + stringAttacks[w].replace("\r", "").replace("\n", "");
} else {

userInput = userInput + stringAttacks|[w];

Intrepidus Group, Inc. © 20038 34



INTREPIDUS‘::‘GPCJUID

PROACTIVE SECURITY

for (int w=0; w<maxIterations; w++) {
openhost () ;

for (int commandIndex = 0; commandIndex < commandCount; commandIndex++)
{
userInput = commands|[commandIndex] .command;
if (commands[commandIndex].argument.equals ("$f")) {
//FUZZ IT
if (AttackID != 4) {
userInput = userInput + stringAttacks[w].replace("\xr", "").replace("\n", "");
} else {
userInput = userInput + stringAttacks[w];
}
} else {
userInput = userInput + " " + commands[commandIndex].argument;
b
userInput = userInput + "\r\n";
try {

toServer.write(userlnput.getBytes(),0,userlnput.getBytes().length);
} catch (Exception e) {
System.out.printin("Connection dropped on write");

¥

Intrepidus Group, Inc. © 2008 35



INTREPRPIDUS ‘: ®(SR0OLUIP

The Process of Fuzzing

1. Target: Commercial FTP Server (WARFTP)

2. Inputs: TCP21, Ftp Commands, Special Chars,
binary files

3. Fuzzed Data: <username>, <password>

4. Send the Fuzzed Data to the Target (code)

5. Monitor for Exceptions

try {

response = in.readLine();
if (Iresponse.equals("")){
// do nothing

b
} catch (IOException e)
{
System.out.printin("ANOMALY: Connection was dropped.");
if (AttackID != 4) System.out.printin("ANOMALY: String length was " +
stringAttacks[w].replace("\r", "").replace("\n", "").length());
s

catch (Exception e) ... Intrepidus Group, Inc. © 2008 36




INTREPRPIDUS ‘: ®(SR0OLUIP

The Process of Fuzzing

1. Target: Commercial FTP Server (WARFTP)

2. Inputs: TCP21, Ftp Commands, Special Chars,
binary files

3. Fuzzed Data: <username>, <password>

4. Send the Fuzzed Data to the Target (code)

5. Monitor for Exceptions

try {

response = in.readLine();
if (Iresponse.equals("")){
// do nothing

b
} catch (IOException e)
{
System.out.printin("ANOMALY: Connection was dropped.");
if (AttackID != 4) System.out.printin("ANOMALY: String length was " +
stringAttacks[w].replace("\r", "").replace("\n", "").length());
s

catch (Exception e) ... Intrepidus Group, Inc. © 2008 37




II\ITF?EIDIDLJS‘: SCROLP

The Process of Fuzzing

—t

. Target: Commercial FTP Server (WARFTP)

. Inputs: TCP21, Ftp Commands, Special Chars,
binary files

Fuzzed Data: <username>, <password>
Send the Fuzzed Data to the Target (code)
Monitor the socket for any exceptions

. Determine Exploitability

Depends...

N

o AW

Intrepidus Group, Inc. © 2008 38



INTREPIDUS‘::‘GQWH@

RRRRRRRRRRRRRRRRR

The Process of Fuzzing

[ Determine Exploitability - Remotely
d You need to know what data you sent

d Record all fuzzed strings, making note of
exceptions

d Network Captures (Wireshark)
d Try and reproduce the scenario
d Is it a memory corruption bug?
d Is it an application logic flaw?
d Determine Exploitability — Locally
d Attach a debugger

Intrepidus Group, Inc. © 2008 39



INTF?EIDIDLJS‘::‘GFQDUID

RRRRRRRRRRRRRRRRR

Fuzzing Logistics

d “A good fuzzer needs to allow a user to quickly
narrow down the iteration that caused the
crash.”

— stryde_hax

d Log all fuzz attempts

d The last one before an anomaly (exception)
is the best place to start

Intrepidus Group, Inc. © 2008 40



II\ITF?EIDIDLJS‘: SCROLP

Fuzzing Logistics

d Reproducibility Challenges

d What if you are two days in on a fuzzing
exercise, and you find a flaw.

d How can you quickly reproduce the scenario
that caused the crash?

<fuzzing_AX>

Intrepidus Group, Inc. © 2008 41




INTF?EIDIDLJS‘::‘GQDUID

RRRRRRRRRRRRRRRRR

Fuzzing ActiveX Objects

d Target: Windows Workstations

d Inputs:
Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

A All fuzzing and fault detection is handled by
COMRaider

d COMRaider Demo

Intrepidus Group, Inc. © 2008 42



INTF?EIDIDLJS‘::‘GQDUID

RRRRRRRRRRRRRRRRR

Fuzzing ActiveX Objects

d Target: Windows Workstations

d Inputs:
Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

d Fuzzing is handled by AxMan, but not
detection. We need an external debugger.

J AxMan Demo

Intrepidus Group, Inc. © 2008 43



INTF?EIDIDLJS‘::‘GQDUID

RRRRRRRRRRRRRRRRR

Fuzzing ActiveX Objects

d Target: Windows Workstations

d Inputs:
Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

d Fuzzing is handled by AxMan, but not
detection. We need an external debugger.

J AxMan Demo

Intrepidus Group, Inc. © 2008 44



