
Fuzzing 101

NYU/Poly.edu

October 23, 2008

Mike Zusman

Hi, I’m Mike Zusman

Past:
•  Web Application Developer
•  Escalation Engineer @ Whale Communications, Inc

(a Microsoft subsidiary)
•  Application Security Team @ ADP, Inc
•  Spoken at Industry Events:

OWASP, BlackHat
(and a cameo at DEFCON)

Current:
•  Senior Consultant

@ Intrepidus Group, Inc.

Intrepidus Group, Inc. © 2007 3

  You already know how to fuzz
  This class will teach you:

  History of fuzzing
  Fuzzing Methodologies
  About Fuzzing tools you can use

  At the end of this class you:
  Will have written your own fuzzer
  Found some cool (hopefully exploitable)

bugs

Great Expectations

Intrepidus Group, Inc. © 2007 4

  Fun entertaining lectures by me
  Lectures contain content from the

“book” and my own experience.
  Homework

The Approach

Michael Sutton
Adam Greene
Pedram Amini
Forward by HD Moore

Intrepidus Group, Inc. © 2007 5

  HAVE FUN!
  When the weathers too bad, or my wife

won’t let me go real “fishing”, I go fuzzing
instead!

The Spirit

Intrepidus Group, Inc. © 2007 6

"Fuzzing is the process of sending
intentionally invalid data to a product in
the hopes of triggering an error
condition or fault. These error conditions
can lead to exploitable vulnerabilities.“

-  HD Moore (from
Fuzzing)

What exactly is fuzzing?

Intrepidus Group, Inc. © 2007 7

“Throw sh!t at the wall and see what
sticks!“ – b3nn

What exactly is fuzzing?

Intrepidus Group, Inc. © 2007 8

"There are no rules to fuzzing.“
-  Fuzzing, the book

“There are no guarantees in fuzzing.”
- Me

What exactly is fuzzing?

Intrepidus Group, Inc. © 2007 9

  Fuzzing is not new
  it’s been named for about 20 years.

  Professor Barton Miller
  Father of Fuzzing
  Developed fuzz testing with his students at

the University of Wisconsin-Madison in
1988/89

  GOAL: improve UNIX applications

History

Intrepidus Group, Inc. © 2007 10

  Millers fuzzer was pretty basic

  It sent random strings of data to the
application

  If (CRASH||HANG) {Finding(fuzzStr);}

  Smarter fuzzers would follow…

History

Intrepidus Group, Inc. © 2007 11

  1999 brought PROTOS from University
of Oulu

History

  PROTOS began by analyzing PROTOcol
specifications

  Packets were modeled that violated the
specs

  Testing suites were designed that could
be used against multiple vendor
products

Intrepidus Group, Inc. © 2007 12

  2002
  Microsoft injects cash into PROTOS

  PROTOS members branch out and start
Codenomicon
  First Commercial Fuzzer

History

Today, Fuzzing is part of Microsoft’s SDL Process!

Intrepidus Group, Inc. © 2007 13

  SPIKE fuzzer also released in 2002
  Dave Aitel wrote it

  Where Millers fuzzer was dumb, SPIKE is a
genius
  Ability to describe data
  Built in libraries for known protocols (*RPC)
  Fuzz strings designed to make software fail

History

Intrepidus Group, Inc. © 2007 14

  2004 Browser Fuzzing
  MangleMe – Michal Zalewski

  Fuzzed HTML to find browser bugs

History

Intrepidus Group, Inc. © 2007 15

  2004 File Format Fuzzing
  Microsoft Security Bulletin MS04-028

  Buffer Overun in JPEG Processing (GDI+) Could Allow
Remote Code Execution

History

Intrepidus Group, Inc. © 2007 16

  2005 File Format Fuzzers Released
  FileFuzz, SPIKEfile, notSPIKEfile

  Michael Sutton and crew

  Then came the rain.
  "When Office 2003 shipped, we thought we'd done

some good work and that it would be a secure
product," said David LeBlanc, a senior software
development engineer with the Office team. "For the
first two years after release, it held up really well,
only two bulletins. [But] then people shifted their
tactics and started finding problems in fairly large
numbers.“ -
http://www.infoworld.com/article/07/09/21/Microsoft-developer-Fuzzing-key-to-Office-security_1.html?
DESKTOP%20SECURITY

History

Intrepidus Group, Inc. © 2007 17

  2005 More Browser Fuzzers
  Hamachi

  HD Moore, Aviv Raff
  Fuzzed Dynamic HTML

  CSSDIE
  HD Moore and crew
  Fuzzed CSS Style Sheets

History

Intrepidus Group, Inc. © 2007 18

  2006 Month of Browser Bugs
  HD Moore and crew released a browser bug every

day, with “no direct path to code execution.”
http://www.foxnews.com/story/0,2933,202547,00.html

  Controversial?
  Blogger thinks so

History

Intrepidus Group, Inc. © 2007 19

  2006 ActiveX Fuzzing
  When his car insurance went up, the GEICO caveman

started selling ActiveX 0days (just kidding)
  Too easy?

History

Intrepidus Group, Inc. © 2007 20

  2006 ActiveX Fuzzing
  COMRaider

  GUI Based
  Point and Click
  iDefense tool

  AxMan
  More complicated to use then COMRaider
  IMO, a better fuzzer

  Why so easy?
  ActiveX/COM objects have exportable typelibs that

describe all methods, interfaces, properties.

History

Intrepidus Group, Inc. © 2007 21

  2007 More Browser Fuzzing

History

Intrepidus Group, Inc. © 2007 22

  2008
  First time fuzzing is taught in a University setting?

Maybe…

History

</history>
<fuzzers>

Intrepidus Group, Inc. © 2008 23 Intrepidus Group, Inc. © 2007 23

  Sending Random Data
  Least Effective
  Unfortunately, sometimes, code is bad

enough for this to work

  Manual Protocol Mutation
  You are the fuzzer
  Time consuming, but can be accurate when

you have a hunch
  Web App Pen-Testing

Fuzzing Methods

Intrepidus Group, Inc. © 2008 24 Intrepidus Group, Inc. © 2007 24

  Mutation or Brute Force Testing
  Starts with a valid sample
  Fuzz each and every byte in the sample

  Automatic Protocol Generation Testing
  Person needs to understand the protocol
  Code is written to describe the protocol (a

“grammar”)
  Fuzzer then knows which piece to fuzz, and

which to leave alone (SPIKE)

Fuzzing Methods

Intrepidus Group, Inc. © 2008 25 Intrepidus Group, Inc. © 2007 25

  Local Fuzzer
  Lets you fuzz applications on the command

line
  To what end?

  Make sure the target has some value
(setuid)

  Environment Variable fuzzers
  Because:

Types of Fuzzers

#include <string.h>
int main (int argc, char **argv)
{

 char buffer[10];
 strcpy(buffer, getenv("HOME"));

}

Intrepidus Group, Inc. © 2008 26 Intrepidus Group, Inc. © 2008 26 Intrepidus Group, Inc. © 2007 26

  File Format Fuzzers
  Fuzz valid files
  Pass them to an executable

  Remote Fuzzers (my favorite)
  Listen on a network connects
  When client connects, fuzz them!

Types of Fuzzers

Intrepidus Group, Inc. © 2008 27 Intrepidus Group, Inc. © 2008 27 Intrepidus Group, Inc. © 2007 27

  Network Protocol Fuzzers
  The Fuzzer is the client
  Need to understand the protocol

  Simple Protocols
  Text Based
  Telnet, FTP, POP, HTTP

  Complex Protocols
  Binary Data (some ASCII)
  Complex authentication, encryption,

etc
  MSRPC (Supported by SPIKE)

Types of Fuzzers

Intrepidus Group, Inc. © 2008 28 Intrepidus Group, Inc. © 2008 28 Intrepidus Group, Inc. © 2008 28 Intrepidus Group, Inc. © 2007 28

Types of Fuzzers

</fuzzers>
<fuzzing>

Intrepidus Group, Inc. © 2008 29 Intrepidus Group, Inc. © 2008 29 Intrepidus Group, Inc. © 2008 29 Intrepidus Group, Inc. © 2007 29

1.   Identify Targets
2.  Identify Inputs
3.  Generate Fuzzed Data
4.  Execute Fuzzed Data
5.  Monitor for Exceptions
6.  Determine Exploitability

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2008 30 Intrepidus Group, Inc. © 2007 30

1. Identify Targets

Intrepidus Group, Inc. © 2008 31 Intrepidus Group, Inc. © 2008 31 Intrepidus Group, Inc. © 2008 31 Intrepidus Group, Inc. © 2007 31

1.  Target: Commercial FTP Server (WARFTP)
2.   Identify Inputs
3.  Generate Fuzzed Data
4.  Execute Fuzzed Data
5.  Monitor for Exceptions
6.  Determine Exploitability

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 32 Intrepidus Group, Inc. © 2008 32 Intrepidus Group, Inc. © 2008 32 Intrepidus Group, Inc. © 2007 32

1.  Target: Commercial FTP Server (WARFTP)
2.   Identify Inputs

•  TCP Port 21, p1, p2 (PASV or active?)
•  Commands: USER, PASS, CWD, DELE, etc
•  Special CHARs: \r\n, <space>

2. Identify Inputs

Intrepidus Group, Inc. © 2008 33 Intrepidus Group, Inc. © 2008 33 Intrepidus Group, Inc. © 2008 33 Intrepidus Group, Inc. © 2007 33

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.   Generate Fuzzed Data
USER <username>
Generation one: 1024 x A
Generation two: 2048 X A
Generation three: 4096 X String(random)
PASS <password>
Generation one: 1024 x A
Generation two: 2048 X A

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 34 Intrepidus Group, Inc. © 2008 34 Intrepidus Group, Inc. © 2008 34 Intrepidus Group, Inc. © 2007 34

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.   Execute Fuzzed Data

The Process of Fuzzing

for (int w=0; w<maxIterations; w++){
openhost();
for (int commandIndex = 0; commandIndex < commandCount; commandIndex++)
{
 userInput = commands[commandIndex].command;
 if (commands[commandIndex].argument.equals("%f")){
 //FUZZ IT
 if (AttackID != 4) {
 userInput = userInput + stringAttacks[w].replace("\r", "").replace("\n", "");
 } else {
 userInput = userInput + stringAttacks[w];
}

Intrepidus Group, Inc. © 2008 35

for (int w=0; w<maxIterations; w++){
openhost();
for (int commandIndex = 0; commandIndex < commandCount; commandIndex++)
{
 userInput = commands[commandIndex].command;
 if (commands[commandIndex].argument.equals("%f")){
 //FUZZ IT
 if (AttackID != 4) {
 userInput = userInput + stringAttacks[w].replace("\r", "").replace("\n", "");
 } else {
 userInput = userInput + stringAttacks[w];
 }
} else {
 userInput = userInput + " " + commands[commandIndex].argument;
}
userInput = userInput + "\r\n";
try {
 toServer.write(userInput.getBytes(),0,userInput.getBytes().length);
} catch (Exception e) {
 System.out.println("Connection dropped on write");
}

Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2008 36 Intrepidus Group, Inc. © 2007 36

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.  Send the Fuzzed Data to the Target (code)
5.   Monitor for Exceptions

The Process of Fuzzing

try {
 response = in.readLine();
if (!response.equals("")){
// do nothing
}
} catch (IOException e)
{
 System.out.println("ANOMALY: Connection was dropped.");
 if (AttackID != 4) System.out.println("ANOMALY: String length was " +

 stringAttacks[w].replace("\r", "").replace("\n", "").length());
}
catch (Exception e) …

Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2008 37 Intrepidus Group, Inc. © 2007 37

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.  Send the Fuzzed Data to the Target (code)
5.   Monitor for Exceptions

The Process of Fuzzing

try {
 response = in.readLine();
if (!response.equals("")){
// do nothing
}
} catch (IOException e)
{
 System.out.println("ANOMALY: Connection was dropped.");
 if (AttackID != 4) System.out.println("ANOMALY: String length was " +

 stringAttacks[w].replace("\r", "").replace("\n", "").length());
}
catch (Exception e) …

Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2008 38 Intrepidus Group, Inc. © 2007 38

1.  Target: Commercial FTP Server (WARFTP)
2.  Inputs: TCP21, Ftp Commands, Special Chars,

binary files
3.  Fuzzed Data: <username>, <password>
4.  Send the Fuzzed Data to the Target (code)
5.  Monitor the socket for any exceptions
6.   Determine Exploitability

Depends…

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2008 39 Intrepidus Group, Inc. © 2007 39

  Determine Exploitability - Remotely
  You need to know what data you sent

  Record all fuzzed strings, making note of
exceptions

  Network Captures (Wireshark)
  Try and reproduce the scenario
  Is it a memory corruption bug?
  Is it an application logic flaw?

  Determine Exploitability – Locally
  Attach a debugger

The Process of Fuzzing

Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2008 40 Intrepidus Group, Inc. © 2007 40

  “A good fuzzer needs to allow a user to quickly
narrow down the iteration that caused the
crash.”

 – stryde_hax

  Log all fuzz attempts

  The last one before an anomaly (exception)
is the best place to start

Fuzzing Logistics

Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2008 41 Intrepidus Group, Inc. © 2007 41

  Reproducibility Challenges

  What if you are two days in on a fuzzing
exercise, and you find a flaw.

  How can you quickly reproduce the scenario
that caused the crash?

Fuzzing Logistics

<fuzzing_AX>

Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2008 42 Intrepidus Group, Inc. © 2007 42

  Target: Windows Workstations
  Inputs:

Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

  All fuzzing and fault detection is handled by
COMRaider

  COMRaider Demo

Fuzzing ActiveX Objects

Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2008 43 Intrepidus Group, Inc. © 2007 43

  Target: Windows Workstations
  Inputs:

Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

  Fuzzing is handled by AxMan, but not
detection. We need an external debugger.

  AxMan Demo

Fuzzing ActiveX Objects

Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2008 44 Intrepidus Group, Inc. © 2007 44

  Target: Windows Workstations
  Inputs:

Internet -> Internet Explorer -> ActiveX ->
Interface -> Vulnerable Method/Property

  Fuzzing is handled by AxMan, but not
detection. We need an external debugger.

  AxMan Demo

Fuzzing ActiveX Objects

