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  Find as much data as you can about the 
target application 

  Google is your friend 

  Maybe someone has fuzzed it 

  Maybe it uses some standard protocol 

Protocol Fuzzing 
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  What is the transport layer? 

  TCP or UDP? 

  Effects anomaly detection 

Protocol Fuzzing 
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  What type of protocol? 

  SIMPLE 

  Text Based 

  COMPLEX 

  Binary 

Protocol Fuzzing 
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Protocol Fuzzing 

 Do we need to authenticate? 

  What authentication protocol? 

 Scoping your assessment 

  You may only care about pre-auth 
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  Reversing the Protocol 

  Generate Traffic and Sniff 

  Use wireshark (check for plug-ins!) 

  It never hurts to ask Google 

Protocol Fuzzing 
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  Reversing the Protocol 

  Establish syntax (authenticate first, then 
command1, followed by command2) 

  Establish a list of commands 

  Establish a list of arguments 

Protocol Fuzzing 
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  Reversing the Protocol 
  Build Command Prototypes 

<argument> : required 
  [argument] : optional 
  {CONSTANT1|CONSTANT2 …}: Required constant argument 

  Example: 
  PASS {SYS | USER <Username>} <Password> 

Protocol Fuzzing 
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  Once you understand how to communicate 
with a service, you can send packets to it. 

  Simple Protocols 
  Use telnet, nc.exe, openssl 

  Complex Protocols 
  Write Code 

Protocol Fuzzing 
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  Now that you can communicate with the 
protocol… 

  Fuzzing Strategy 
  How would you fuzz it? 

  What can you fuzz in this prototype? 
  PASS {SYS | USER <Username>} <Password> 

Protocol Fuzzing 
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  Fuzzing is repetitive 
  Open/Close connections to hosts 
  Build a UDP packet 
  Write data to a socket 
  Read Data from a socket 
  Loop through a sequence 
  Fuzz each parameter 
  etc 

Protocol Fuzzing 
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  If you try to write a network protocol fuzzer, 
you will eventually end up re-inventing the 
wheel 

  SPIKE is a fuzzing framework/API 
  Written in C by Dave Aitel 

  It takes care of the busy work 

Protocol Fuzzing 
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  Simple Text Based Protocol Fuzzing 
  line_send_tcp.c 

  Accepts a “script” of SPIKE commands 
  Example: 

SPIKE 

  s_string_variable("PASS"); 
  s_string(" "); 
  s_string_variable("USER"); 
  s_string(" "); 
  s_string_variable("devel_user"); 
  s_string(" "); 
  s_string_variable("secretpassword"); 
  s_string("\r\n"); 
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  Simple Text Based Protocol Fuzzing 

  line_send_tcp.c 

  ./line_send_tcp <IP> <PORT> script.spk 00 

SPIKE 
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  SPIKE’s real value 
  Complex Protocols have length fields and data 

fields 

  Tracking length fields while fuzzing data is 
complicated 

  SPIKE does this for you 

  Block Based Protocol Representation 

SPIKE 
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  What is a SPIKE? 
  “A SPIKE is a simple list of structures which 

contain block size information and a queue of 
bytes.” 

SPIKE 

s_block_size_binary_bigendian_word(“somepacketdata”); 
s_block_start(“somepacketdata”) 
s_binary(“01020304”); 
s_block_end(“somepacketdata”); 
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  Push 4 NULLs onto  BYTE queue  (size 
place holder) 

  Then a new BLOCK listener is allocated 
named “somepacketdata” 

SPIKE 

s_block_size_binary_bigendian_word(“somepacketdata”); 
s_block_start(“somepacketdata”) 
s_binary(“01020304”); 
s_block_end(“somepacketdata”); 
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  Script starts searching the block 
listeners for one named 
“somepacketdata” 

  Block “start” pointers are updated to 
reflect the blocks position in the queue 

SPIKE 

s_block_size_binary_bigendian_word(“somepacketdata”); 
s_block_start(“somepacketdata”) 
s_binary(“01020304”); 
s_block_end(“somepacketdata”); 
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  4 bytes of data are pushed onto the 
queue 

SPIKE 

s_block_size_binary_bigendian_word(“somepacketdata”); 
s_block_start(“somepacketdata”) 
s_binary(“01020304”); 
s_block_end(“somepacketdata”); 
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  The block is ended, and the sizes are 
finalized 

  The original 4 null bytes are updated 
with the appropriate size value 

SPIKE 

s_block_size_binary_bigendian_word(“somepacketdata”); 
s_block_start(“somepacketdata”) 
s_binary(“01020304”); 
s_block_end(“somepacketdata”); 
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SPIKE 

s_block_size_binary_bigendian_word(“somepacketdata”); 
s_block_start(“somepacketdata”) 
s_binary(“01020304”); 
s_block_end(“somepacketdata”); 
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SPIKE 

  Given Prototype 
 Data (length 100 byte) 
 { Element1 (length 75 bytes) 
   { 
    B x 50 
    SubElement1(length 25 bytes) 
     {A x 25} 
   } 
 } 



Writing SPIKE 

 Walk Through the Code 
  Citrix.c 
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Writing SPIKE 

  That’s it! 
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