
Fuzzing 101

NYU/Poly.edu

October 23, 2008

Mike Zusman

Intrepidus Group, Inc. © 2007 2

  Find as much data as you can about the
target application

  Google is your friend

  Maybe someone has fuzzed it

  Maybe it uses some standard protocol

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 3

  What is the transport layer?

  TCP or UDP?

  Effects anomaly detection

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 4

  What type of protocol?

  SIMPLE

  Text Based

  COMPLEX

  Binary

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 5

  What type of protocol?

  SIMPLE

  Text Based

  COMPLEX

  Binary

Protocol Fuzzing

Protocol Fuzzing

 Do we need to authenticate?

  What authentication protocol?

 Scoping your assessment

  You may only care about pre-auth

Intrepidus Group, Inc. © 2008 6

Intrepidus Group, Inc. © 2007 7

  Reversing the Protocol

  Generate Traffic and Sniff

  Use wireshark (check for plug-ins!)

  It never hurts to ask Google

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 8

  Reversing the Protocol

  Establish syntax (authenticate first, then
command1, followed by command2)

  Establish a list of commands

  Establish a list of arguments

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 9

  Reversing the Protocol
  Build Command Prototypes

<argument> : required
 [argument] : optional
 {CONSTANT1|CONSTANT2 …}: Required constant argument

  Example:
  PASS {SYS | USER <Username>} <Password>

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 10

  Once you understand how to communicate
with a service, you can send packets to it.

  Simple Protocols
  Use telnet, nc.exe, openssl

  Complex Protocols
  Write Code

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 11

  Now that you can communicate with the
protocol…

  Fuzzing Strategy
  How would you fuzz it?

  What can you fuzz in this prototype?
  PASS {SYS | USER <Username>} <Password>

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 12

  Fuzzing is repetitive
  Open/Close connections to hosts
  Build a UDP packet
  Write data to a socket
  Read Data from a socket
  Loop through a sequence
  Fuzz each parameter
  etc

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 13

  If you try to write a network protocol fuzzer,
you will eventually end up re-inventing the
wheel

  SPIKE is a fuzzing framework/API
  Written in C by Dave Aitel

  It takes care of the busy work

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 14

  If you try to write a network protocol fuzzer,
you will eventually end up re-inventing the
wheel

  SPIKE is a fuzzing framework/API
  Written by Dave Aitel

  It takes care of the busy work

SPIKE

Intrepidus Group, Inc. © 2007 15

  Simple Text Based Protocol Fuzzing
  line_send_tcp.c

  Accepts a “script” of SPIKE commands
  Example:

SPIKE

 s_string_variable("PASS");
 s_string(" ");
 s_string_variable("USER");
 s_string(" ");
 s_string_variable("devel_user");
 s_string(" ");
 s_string_variable("secretpassword");
 s_string("\r\n");

Intrepidus Group, Inc. © 2007 16

  Simple Text Based Protocol Fuzzing

  line_send_tcp.c

  ./line_send_tcp <IP> <PORT> script.spk 00

SPIKE

Intrepidus Group, Inc. © 2007 17

  SPIKE’s real value
  Complex Protocols have length fields and data

fields

  Tracking length fields while fuzzing data is
complicated

  SPIKE does this for you

  Block Based Protocol Representation

SPIKE

Intrepidus Group, Inc. © 2007 18

  What is a SPIKE?
  “A SPIKE is a simple list of structures which

contain block size information and a queue of
bytes.”

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 19

  Push 4 NULLs onto BYTE queue (size
place holder)

  Then a new BLOCK listener is allocated
named “somepacketdata”

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 20

  Script starts searching the block
listeners for one named
“somepacketdata”

  Block “start” pointers are updated to
reflect the blocks position in the queue

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 21

  4 bytes of data are pushed onto the
queue

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 22

  The block is ended, and the sizes are
finalized

  The original 4 null bytes are updated
with the appropriate size value

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 23

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 24

SPIKE

  Given Prototype
 Data (length 100 byte)
 { Element1 (length 75 bytes)
 {
 B x 50
 SubElement1(length 25 bytes)
 {A x 25}
 }
 }

Writing SPIKE

 Walk Through the Code
  Citrix.c

Intrepidus Group, Inc. © 2008 25

Writing SPIKE

 Walk Through the Code
  line_send_tcp.c

Intrepidus Group, Inc. © 2008 26

Writing SPIKE

  That’s it!

Intrepidus Group, Inc. © 2008 27

