
Fuzzing 101

NYU/Poly.edu

October 23, 2008

Mike Zusman

Intrepidus Group, Inc. © 2007 2

  Find as much data as you can about the
target application

  Google is your friend

  Maybe someone has fuzzed it

  Maybe it uses some standard protocol

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 3

  What is the transport layer?

  TCP or UDP?

  Effects anomaly detection

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 4

  What type of protocol?

  SIMPLE

  Text Based

  COMPLEX

  Binary

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 5

  What type of protocol?

  SIMPLE

  Text Based

  COMPLEX

  Binary

Protocol Fuzzing

Protocol Fuzzing

 Do we need to authenticate?

  What authentication protocol?

 Scoping your assessment

  You may only care about pre-auth

Intrepidus Group, Inc. © 2008 6

Intrepidus Group, Inc. © 2007 7

  Reversing the Protocol

  Generate Traffic and Sniff

  Use wireshark (check for plug-ins!)

  It never hurts to ask Google

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 8

  Reversing the Protocol

  Establish syntax (authenticate first, then
command1, followed by command2)

  Establish a list of commands

  Establish a list of arguments

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 9

  Reversing the Protocol
  Build Command Prototypes

<argument> : required
 [argument] : optional
 {CONSTANT1|CONSTANT2 …}: Required constant argument

  Example:
  PASS {SYS | USER <Username>} <Password>

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 10

  Once you understand how to communicate
with a service, you can send packets to it.

  Simple Protocols
  Use telnet, nc.exe, openssl

  Complex Protocols
  Write Code

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 11

  Now that you can communicate with the
protocol…

  Fuzzing Strategy
  How would you fuzz it?

  What can you fuzz in this prototype?
  PASS {SYS | USER <Username>} <Password>

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 12

  Fuzzing is repetitive
  Open/Close connections to hosts
  Build a UDP packet
  Write data to a socket
  Read Data from a socket
  Loop through a sequence
  Fuzz each parameter
  etc

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 13

  If you try to write a network protocol fuzzer,
you will eventually end up re-inventing the
wheel

  SPIKE is a fuzzing framework/API
  Written in C by Dave Aitel

  It takes care of the busy work

Protocol Fuzzing

Intrepidus Group, Inc. © 2007 14

  If you try to write a network protocol fuzzer,
you will eventually end up re-inventing the
wheel

  SPIKE is a fuzzing framework/API
  Written by Dave Aitel

  It takes care of the busy work

SPIKE

Intrepidus Group, Inc. © 2007 15

  Simple Text Based Protocol Fuzzing
  line_send_tcp.c

  Accepts a “script” of SPIKE commands
  Example:

SPIKE

 s_string_variable("PASS");
 s_string(" ");
 s_string_variable("USER");
 s_string(" ");
 s_string_variable("devel_user");
 s_string(" ");
 s_string_variable("secretpassword");
 s_string("\r\n");

Intrepidus Group, Inc. © 2007 16

  Simple Text Based Protocol Fuzzing

  line_send_tcp.c

  ./line_send_tcp <IP> <PORT> script.spk 00

SPIKE

Intrepidus Group, Inc. © 2007 17

  SPIKE’s real value
  Complex Protocols have length fields and data

fields

  Tracking length fields while fuzzing data is
complicated

  SPIKE does this for you

  Block Based Protocol Representation

SPIKE

Intrepidus Group, Inc. © 2007 18

  What is a SPIKE?
  “A SPIKE is a simple list of structures which

contain block size information and a queue of
bytes.”

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 19

  Push 4 NULLs onto BYTE queue (size
place holder)

  Then a new BLOCK listener is allocated
named “somepacketdata”

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 20

  Script starts searching the block
listeners for one named
“somepacketdata”

  Block “start” pointers are updated to
reflect the blocks position in the queue

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 21

  4 bytes of data are pushed onto the
queue

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 22

  The block is ended, and the sizes are
finalized

  The original 4 null bytes are updated
with the appropriate size value

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 23

SPIKE

s_block_size_binary_bigendian_word(“somepacketdata”);
s_block_start(“somepacketdata”)
s_binary(“01020304”);
s_block_end(“somepacketdata”);

Intrepidus Group, Inc. © 2007 24

SPIKE

  Given Prototype
 Data (length 100 byte)
 { Element1 (length 75 bytes)
 {
 B x 50
 SubElement1(length 25 bytes)
 {A x 25}
 }
 }

Writing SPIKE

 Walk Through the Code
  Citrix.c

Intrepidus Group, Inc. © 2008 25

Writing SPIKE

 Walk Through the Code
  line_send_tcp.c

Intrepidus Group, Inc. © 2008 26

Writing SPIKE

  That’s it!

Intrepidus Group, Inc. © 2008 27

