

the making of atlas

Kiddie to Hacker in 5 Sleepless
Nights

0x000 - Statement of Humility

● I admit that I am not that great.
● I was given a functional mind and a bit of

curiosity, for which I am thankful.
● I have not done anything you could not also do.
● I simply have done some enjoyable things.
● That abilities I do have have been given me, for

which I am thankful.

0x100 - Intro to me
atlas@r4780y.com

http://atlas.r4780y.com/
● Programming since I was 8 (if you call BASICA

programming ;)
● BACS, Network Engineering, Consulting,

Teaching
● Telecom/Security work... intro to "Hacking

Exposed"
● SANS Track 4 with the Mighty Ed Skoudis!
● CTF meant something completely different

0x200 - Setting of June 3rd, 2005

● New Baby
● Forgot CTF Quals – DOH!
● Friends visiting from out of state: Limited to

hacking from midnight until morning
● Nobody showed up for the team effort

0x300 - Briefly Stage 1 and Stage 2

● Scanning the box: 22, 80, and 6969 (the
"Protocol Failure" daemon)

● Web app with hidden field which could be
leveraged to display *any* file on the system

● including /etc/passwd and /etc/master.passwd
● Cracking simple passwords with John the

Ripper... but did not gain me a login to the box.
● root:fred
● breakme:apple1

● Warning: Screen Gone Wild!

0x400 - Oh Sh17.
● "Protocol Failure" and Sex Port 6969 (greetz j0hnny!)

file

strings

netcat
(flashback)

0x500 - Stage 3

●Mental Surrender
●Fear, Uncertainty and Doubt
●Which were somewhat founded because I knew
nothing...

0x600 - A New Hope...

● "Hacking: The Art of Exploitation"
– Hacking with Perl and Bash... Novel concept

● ExploitX paper
● http://www.exploitx.com/forum/azbb.php?1112286936

● Simple, driven determination

0x700 - The T001z

● Objdump
● ReadElf
● GDB
● Ktrace/KDump
● and now, disass

0x710 – objdump

0x711 – objdump -d (disassembling)

0x720 – ReadELF

0x730 – ktrace/kdump

0x800 - Tracing through Stage3

● BSD on Vmware
● ./stage3 6969 (formerly “binary”)

● Ktrace for kernel call tracing
● ktrace -dip `ps ax |grep stage3 |grep -v grep |cut -c-6`
● nc -v localhost 6969

("bacon:myname:mypassword:somethingelse\r”)
● kdump

● gdb
● gdb ./stage3 `ps ax |grep stage3 |grep -v grep |cut -c-6`

0x900 - Analyzing Ktrace output

– 'cuz I was still too lame to get over my fear of the raw ASM

0xa00 - D00d, where's my shell?

– turns into...
● Loitering and Meandering around memory

space (one of GDB's deficiencies)
● Something I hadn't a clue about:

– Memory space is clearly defined in the ELF binary...
– DOH!
– I'm a Retard. I was x/32wx-ing all over cyber-hell

trying to learn where stuff was. Stupid!

0xb00 - objdump -x demystified
(oh if only I knew then...)
● File Header: ELF
● Program Headers
● Dynamic “Stuff”
● Sections

0xb01 - objdump -x demystified
● (oh if only I knew then...)

0xb01 - objdump -x demystified
● (oh if only I knew then...)

0xb02 - objdump -x demystified
● (oh if only I knew then...)

0xc00 - Waste of Time?

●Not to say my wanderings didn't pay off...
●Learning immense amounts...

● GDB
● Memory layout
● Particulars (like what “leave” and “ret” really do)

0xd00 - Favorite GDB helpers
GDB's main commands for poking around:

 p (or p/x for printing Hex versions) - Print an expression.

 x (or x/32wx for printing 32 Hex words) - Show memory *at* a location

 break Set a breakpoint (must include a * to start raw memory addresses)

 continue Start execution again after a break point

 ni/si Execute the next instruction. One skips calls, the other digs deep

 display Like x, but will reprint the output prior to each prompt

 info reg Information about all registers

 info frame Information about the current Stack frame (ebp - esp)

 bt Print's a BackTrace (list of Stack Frames from start of app)

 help Prints the many maze-like

0xd01 - Favorite GDB Helpers (2)

Breakpoints for each "call":

 break *0x<address of call 1>

 break *0x<address of call 2>

 etc...

DISPLAY SETTINGS/Basic

 display/i $pc

 display/x $edx

 display/x $ecx

 display/x $ebx

 display/x $eax

 display/32wx $ebp-92

 display/32xw $esp

0xe00 - Pseudo-fuzzing

● What I did, I cringe to call fuzzing
– Perl from the command-line piped to netcat
– Metasploit exploit code

● Isn't sharing nice?

0xf00 - Why you should run a
sniffer while writing network sploitz
● $|
● The sploit wasn't even hitting the wire...
● @#$% buffered IO!
● Two lines needed a delay between them.

– Impossible if you're not pushing the first line to
begin with!

– Still difficult using 'perl -e “...” | nc fhost 6969'
● Rewrote client/fuzzer to do network stuff in perl

0x1000 - Racking and Stacking:

0x1001 - Racking and Stacking:

0x1002 - Racking and Stacking:

0x1003 - Racking and Stacking

0x1100 - Sex Port 6969 and the
Thrill of Conquest

0x1200 - Stages 4-7

● Over the following weeks
● Mostly spent learning glibc artifacts

● stage4: Byte-overrun BOF in “client”
● stage5: FSE
● stage6: Hidden option: Careless fn ptr
● stage7: Precision-mismatch BOF

● clearenv()
● beabitch()

0x1300 – The Future of atlas

●Reversing has now become an addictive habit
●I will likely continue until my fingers and eyes no
longer work
●b1nary pr0n.

● 0110010001101111011011010110010101100010011000010110001001111001

0x1400 – Intro to @UtilityBelt

● hacklib.pl and hacklib.py
● genshell.pl and genshell.py
● genformatstring.pl and genformatstring2.pl
● genformatstring.py
● disass.pl (v1.0)
● disass.py (v2.0)
● Several others: un64/en64, ascii2binary/etc...

0x1410 - hacklib.pl

●Just a way to make the exploit writing easier:
●"do hacklib.pl"

0x1411 - genshell
0x1412 - genNOP
0x1413 - print_hex_reverse
0x1414 - genformatstring
0x1415 - xw

0x1420 - hacklib.py

●Just a way to make the exploit writing easier:
●"import hacklib"

0x1421 - genshell
0x1422 - genNOP
0x1423 - print_hex_reverse
0x1424 - genformatstring
0x1425 - xw

0x1430 - genformatstring.py

● Command-line access to “genformatstring()”
from hacklib.py

● genformatstring.py [--inline] <replaceaddy> <withaddy>
● Spits out some debugging data to <stderr>

0x1440 - disass.pl

● Original version (1.0)
● Fast, simple

0x1441 - Assembly (or rather, disassembly)

0x1442 - Global Offset Table (GOT)

0x1443 - Headers

0x1444 - Symbols

0x1445 - Libraries

0x1446 - GDB helpers (breaks and display
settings ;)

0x1450 - disass.py

● New version (2.0) rewritten in Python
● Slower, more in-depth

0x1451 - Assembly (or rather, disassembly)

0x1452 - Global Offset Table (GOT)/PLT

0x1453 - Headers/Symbols/Libraries

0x1454 - DATA!

0x1455 - GDB helpers (breaks and display
settings ;)

0x1500 - Interesting Info and Links:

● Hacking: The Art of Exploitation
● ExploitX.org link

● http://www.exploitx.com/forum/azbb.php?1112286936
● Reversing: Secrets of Reverse Engineering
● atlas' potentially braindead tips to deadlisting.
● Elf File Format Specs:

● http://refspecs.freestandards.org/elf/gabi4+/
● Gera's Insecure Programming exercises

● http://community.core-sdi.com/~gera/InsecureProgramming/

http://refspecs.freestandards.org/elf/gabi4+/

0x1501 – More interesting links

● IA-32 Intel Architecture Software Dev Manuals
– http://www.intel.com/design/pentium4/manuals/index_new.htm

http://www.intel.com/design/pentium4/manuals/index_new.htm

0x1600 - Thanks:

● God
● Family and Friends
● Work
● Kenshoto
● DC Staff

0x1700 - Outtakes

● atlas' typing at 5am while sleeping... It's quite
intriguing how words really *WANT* to appear!

