
NYU Poly Reverse Engineering Lecture

Aaron Portnoy
TippingPoint Security Research

Peter Silberman
Mandiant Engineering and Research

Outline

Agenda
Software auditing and reverse engineering on Windows
SESSION ONE

Auditing methodologies
Tools of the trade
Disassembling and IDA Pro

SESSION TWO
Reversing styles and techniques
Vulnerability classes
Vulnerability analysis and debugging
Automation (if time permits)

Focus on vulnerability discovery and analysis

Introduction to RE
Why is this skill set valuable?

Source is not often available for Windows applications
Eliteness factor

Often exponentially more difficult than source auditing
Find bugs where few others are comfortable

Homebrew patches
Patch analysis

e.g. Reversing Microsoft patches to discover root cause
1st with a new exploit or Metasploit module?
1st with a new signature for an AV or IPS?

Binary code is a $ goldmine $
Bugs exist for long periods of time in binary code

Introduction to RE (cont.)

Why is this skill set valuable (cont.)?
Knowledge is portable

Apply techniques to wide array of tasks
New architectures become approachable

Developing countries rely on it
Why engineer from scratch when you can copy
Reverse for security, ensure there are no backdoors
In the US we take these things for granted

Introduction to RE (cont.)

It's not always about the assembly
Reversing is the process by which you attempt to understand the system

- Operating system
- Software
- Hardware
- Plane, train, auto, anything that was engineered

Reverse the system as a whole, helps locate trust boundaries

Malkovich malkovich, malkovich?
GOAL: Get inside the developer’s head
Reverse engineer intentional behavior to determine how to deviate execution

from that intention

Overview of Approach

General Steps, pre-disassembling
- Examine system behavior
- Enumerate components
- Determine relationships
- Determine trust
- Locate and probe inputs

Many tools to aid in this process
We’ll cover some of these

Step by step

Examining system behavior
Documentation

Install & use the product!

Support forums
Exploitable bugs might be “annoyances” to regular users

Step by step (cont.)

Enumerating components
Documentation

Product prerequisites (Java, .NET, …)

MSRPC
Process Explorer
rpcdump, rpcinfo
mIDA

ActiveX, Codecs, File formats, Protocol Handlers, …
RegMon
FileMon
ProcessMon

Services
services.msc / TCPView

TCP View from MS

Process Explorer from MS

mIDA from Tenable (MSRPC)

Services

Registered Codecs

Registered Codecs

Registered Protocol Handlers

ActiveX Controls

Step by step (cont.)

Determining relationships
Documentation

Loaded modules
Do different processes share 3rd party DLL files?

Local ports, Named pipes
IPC
Check shared handles

Wireshark
Use the product, sniff

Step by step (cont.)

Determining trust
Documentation

Ethernet interfaces bound
Local? Remote? TCP? UDP? …

Named pipe restrictions
Authentication

ActiveX
Safe for scripting
Safe for init

Privileges of users running processes
Permissions on resources, directories, handles, …

Step by step (cont.)

Locating inputs
Documentation
Registry entries

File formats, codecs, protocol handlers
TCP View /Process Explorer

Probing inputs
Create your own “clients”

MSRPC
Impacket (Core), PyMSRPC (Myself and Cody Pierce)

ActiveX
COMRaider (David Zimmer), Axman (HD Moore)

TCP/UDP/…
Socket code (py, pl, C, take your pick)

Subverting client code
Don’t bother implementing an encryption if you can steal theirs

Questions?

Disassembling and IDA Pro

Intro to binary code structure

Modules
process.exe, library.dll

Functions
At least one basic block, can be called

Basic Blocks
Groups of instructions terminated at a branch or return

mov ebx, dword_0x400400

test ebx, ebx
jz fail

Instructions
Atomic

mov eax, [ebp+0x4c]

Func/Basic block/Instruction

Func/Basic block/Instruction

Func/Basic block/Instruction

Func/Basic block/Instruction

INSTRUCTIONS

Graphing

Code can be represented as a graph, as shown previously
Graph traversal code is applicable here

Assuming no dynamic transfers of execution, like:

call [edx+0x20]

Graphing tricks
Reachability (Function & Basic Block)

Upgraph/Downgraph/Intersection
Discover new vectors for attacks
Discover paths to interesting code

Locate recursive functions programmatically
Loop detection

Binary diffing (BinDiff from Zynamics)

Graphing

Graphing

Graphing

Graphing

Questions?

Intro to binary data structures

Objects (think object-oriented, C++, …)
@ecx
Constructors
Destructors
Function tables

Methods
Inheritance

Variables
Local
Global
Structures
Defined on Stack vs. Heap

Important for exploitation

Introduction to IDA Pro

How many here have used a disassembler? IDA?

Important facilities to a reverser provided by IDA
FLIRT
Strings

assert() calls
debug functions

Cross referencing
Imports/Exports
Segments

IDA SDK, IDC, IDAPython, IDA Debugger
Plugins
Automated analysis (we’ll get to this later)

RE – Static Analysis

Important to locate sources of user input
No runtime info available (besides sometimes RTTI)

Cross referencing and graphing is key
C++ can make this aggravating

Pattern matching is helpful
IDC/IDAPython

Find me all “movsx” from this function down
Find me all “add reg32, x” followed by malloc()
Loop detection
Unsafe library calls

*cpy
*alloc

RE – Dynamic Analysis

Breakpoints allow for jump start on analysis
e.g. Memory breakpoint on recv() buffer

Ability to resolve…
Object structure and relationships

Type information
Input from other processes/systems/configs/…

Global variables

Ability to populate .idb with runtime information

Crucial to exploit development
e.g. Analyze heap layout dynamically

Questions?

RE – Debuggers

Pros Cons

WinDBG
Mature piece of software. Great symbol
support. Allows for neat tricks like heap
walking and integrity checks. Kernel!

Steep learning curve. Poor plugin
API.

OllyDBG
Intuitive user interface. Large community of
users. Nice plugin API.

Flakey symbol support. Only
supports 32-bit. Default install
exposes exploitable vulnerabilities!

PyDBG Scriptable and easily extensible.
Python is slow. Only supports 32-
bit. Designed to be event-based.

IDA debugger
Contains 9 debugging engines. Built-in to
IDA.

Multiple module support can be
tricky to get the hang of. UI sketchy.

To Recap

Reverse from the top down
Understand the system to understand it’s parts

Use the proper tools to aid you
Saves time and focus

Use every technique you have available
Mixture of static and dynamic analysis

Conclusion of Session One

Questions?

E-mail the mailing list if you have additional questions
I am subscribed as well

Alternatively
My gmail username is aportnoy

Thanks!

