
NYU Poly Reverse Engineering Lecture
Session II

Aaron Portnoy
TippingPoint Security Research

Peter Silberman
Mandiant Engineering and Research

Intro to x86

• Contains 8 general purposes registers

– @eax, ebx, ecx, edx, esi, edi, ebp, esp

– Consider them temporary variables

• Stack is used to store registers when values
need to be saved

– LIFO (push/pop)

P

Basic Program Execution Registers

Eight General Purpose Registers

EAX

EBX

ECX

EDX EDI

ESI

ESP

EBP

Six Segment RegistersProcessor Status Flags

Instruction Pointer

EFLAGS

EIP

CS

SS

DS

ES

FS

GS

P

General Purpose Registers

 The 8 general purpose registers are used for
arithmetic and data movement

 Each register can be addressed as a 32 bit, 16 bit or
8 bit value

32 bits

16 bits

8 bits + 8 bits

EAX

AX

AH AL

P

Overlapping Registers

32-bit 16-bit 8-bit (high) 8-bit (low)

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

ESI SI

EDI DI

EBP BP

ESP SP

P

General-Purpose Registers

 Some of these registers are used by specific instructions

 EAX is automatically used by multiplication and division
operations

 ECX is used as a counter in several instructions

 ESI and EDI are as src and dst for copying data in loops

 EBP and ESP are used to track changes to the stack

 Calling conventions and ABIs define certain registers uses

• EAX is used to store the return value for function calls

• ECX is used to store a pointer to the ‘this’ object in C++

P

Classes of Instructions

• X86 has a lot of instructions
– We are only going to cover a select few

• Instructions that:
– Read
– Write
– Compare
– Branch
– Perform Arithmetic

• Add
• Subtract
• Multiply
• Divide
• Bitmath
• Floating Point

A

Read Instructions

• Memory dereferencing is the equivalent of
reading
unsigned long x = 0;

x = *p;

• Where * is dereference assignment

• [] is dereference assignment in x86
mov reg32, [reg32] -> mov eax, [ecx]

mov reg32, [imm32] -> mov eax, [04010000]

pop eax

A

Write Instructions

• Consider these a store

– mov [ebx], 0x20

• Stores the immediate value 0x20 at the address
specified by @ebx

– mov [ecx+0x14], edx

• Stores the value of the edx register into the address at
ecx plus 0x14 bytes

A

Stack Operations

• push
– Syntax: push src

• Examples:
– push eax
– push 0x100
– push dword_0x100400

• pop
– Syntax: pop dst

• Examples:
– pop eax

A

Arithmetic

• inc
– Syntax: inc dst

• Examples:
– inc edx

• dec
– Syntax: dec dst

• Examples:
– dec eax

A

Arithmetic (cont.)

• mul
– Syntax: mul src

• Result is stored in ecx

• Examples:
– mul edx

• div
– Syntax: div src

• Result is stored in eax

• Examples:
– div edi

A

Arithmetic (cont.)

• add
– Syntax: add dst, src

• Examples:
– add eax, 10
– add edx, eax

• sub
– Syntax: sub dst, src

• Examples:
– sub eax, 10
– sub ecx, edx

A

Arithmetic (cont.)

• lea

– Syntax: lea dst, src

• Examples:

– lea eax, [eax*4]

– lea edx, [edi+ecx]

A

Arithmetic (cont.)

• Bitmath

– shl, shr

• Shifts the bits of the operand either to the left or to the
right

– 00000111 << 2 = 00011100

– Examples:

• shl eax, 2

• shr edx, 4

A

Arithmetic (cont.)

• Floating Point

– fbld, fild, fcmovnbe, …

– Consult x86 manuals

A

Comparisons

• cmp
– Syntax: cmp dst, src

• Examples:
– cmp eax, ecx
– cmp edx, 10

• test/and
– Syntax: test dst, src

• Examples:
– and eax, 10
– test ecx, edx

A

Branches

• Used to direct code, frequently based on
previous comparison

• jxx

– Syntax: jxx dst

• Examples:

– jz reg32

– jnb $-5

– jnz 0x04010012

A

Code Execution Transfers

• Call
– Used to call functions
– Syntax: call src

• Examples:
– call ecx
– call [40100000]
– call 0x41c2200c

• Occasionally the jmp instruction will be responsible for
transferring execution to another function
– Examples:

• jmp 0x41c2200c

A

Questions?

Vulnerability Classes

• Those we’ll cover
– Integer Overflows

– Stack/Heap Based Buffer Overflow

– Format Strings

• Those we won’t
– Invalid Free/Double Free

– Uninitialized Variables

– Misc. (memory corruption)
• MS09-028: http://bit.ly/owningMSdirectshow

P

Integer Wraps

• Integers are able to store a finite size

• Integer wraps due to type conversion

– Width

• Unsigned long to short

• Integer wraps due to arithmetic

– MAX_INT + x

– 0 - x

P

Integer Overflows (Ex 1)

unsigned long a = 0xFFFFFFFD;

unsigned long b = 3;

unsigned long c = 2;

c = a + b;

printf("Result: 0x%08x\n", c);

• Output:
Result: 0x00000000

P

Integer Overflows (Ex1)

P

Integer Overflows (Ex2)

void SomeFunc(unsigned long user_supplied, char * userbuffer)
unsigned long a = 0;

SHORT b = 0;

char mybuffer[300];

a = user_supplied;

b = a;

printf("Checking %d to make sure it is less than 300\n", b);

if(b >= 300)

{

printf("Thank you come again..\n");

return;

}

printf("Passed my checks, copying %d bytes into buffer of size %d\n", a, sizeof(mybuffer));

strncpy(mybuffer, userbuffer, a);

P

Integer Overflows (Ex2)

• Output:

Checking 0 to make sure it is less
than 300

Passed my checks, copying 65536 bytes
into buffer of size 300

P

Stack/Heap Overflows

• Stack/Heap overflows are the most common
memory mismanagement
– Smashing the Stack for Fun and Profit, classic:

http://www.phrack.org/issues.html?id=14&issue=49

– Gera’s insecure programming examples:
http://community.corest.com/~gera/InsecureProgrammin
g/abo1.html

• Essentially, exceeding the bounds of an
allocation during a sequence of writes

A

Stack/Heap Overflows (Ex1)

A

Stack/Heap Overflows (Ex2)

A

Format String

• Passing unsanitized user input to a function
that accepts a format string

– Caused by C’s ability to use varargs

– Enables attackers to read or write data to memory

– %s, %x, %n

A

Format String (Ex1)

void pretty_print(char * user)
printf(user);

• No sanitization of user input what happens we
direct the function to continually pop items
off the stack?

A

Questions?

Automation

Vulnerability Hunting Styles

• I've been up for 3 days straight, where's my
coffee: Cerebral and Successful Method (Aaron)

– Fully reverse document a product’s internal workings

– Pros:

• Full understanding of the product

• In the developers head

• Finding bugs is much easier, think like the developer

– Cons:

• Time consuming

Pros: Finds bugs faster, less time spent reversing means you can hit multiple products at once since time spent reversing is very focused. Don't have to consume A LOT of coffee
Cons: Only knocks off low to medium hanging fruit. Will not unless very lucky or well designed input bypass complex checks. You're not in the developers head so theres more luck involved.

A

Vulnerability Hunting Styles

• Where's my Ritalin: ADHD Induced Method, Less successful
(Peter):
– Only reverse points of input:

• CreateFile, recv, ReadFile, rpc, etc..

– Spend sometime understanding how to craft input to get
most code coverage

– Pros:

• Finds bugs faster
• less time spent reversing
• Don't have to consume A LOT of coffee

– Cons:
• Only knocks off low to medium hanging fruit.
• May not get full code coverage

P

Vulnerability Hunting Styles

• As much as our styles differ, we both make use
of automation
– Using conditional breakpoints to gather information

– Analyzing binary code programmatically

– Instrumenting an application
• Call unknown() 10000 times with differing args, analyze output

– Gathering runtime data

• Fill in cross references with dynamic call information

• Dump global variable values

P

Automating Binary Analysis

• Binary analysis tasks automated for speed

– Deobfuscation

– Control and Data Flow Analysis

• CF Analysis can lead to identification or programming
errors

– Bad calls, dangerous loops, signed/unsigned compares etc..

• DF Analysis can be used for type reconstruction or to
improve CF analysis

– User supplied variable + 2 = integer overflow

» Knowing its user supplied is the key

P

Automating Binary Analysis

• Pattern Matching:

– Can be used to auto comment commonly used
instruction sequences

• Inline strcpy/strcmp/strlen

• Inline memcpy, memset, memmove

• FindCrypt plugin (for locating common crypto methods)

– Find possibly interesting code to audit

• Arithmetic followed by allocations

• Format string calls with no format token

P

IDA + Automated Binary Analysis

• IDA provides its own scripting interface called IDC

• IDAPython gives users access to the SDK and IDC

– All in python!

– This is what we will focus on today

• Note we will be using IDAPython 2.5 (compiled
from trunk)

– http://thunkers.net/~deft/misc/Reversing102.zip

P

Iterating Over Functions

for ea_start in Functions(MinEA(), MaxEA()):

print "%s: 0x%08x" % (GetFunctionName(ea_start), ea_start)

• Output:
__SEH_epilog: 0x757319fc

__SEH_prolog: 0x75731a0d

?LsapScavengerTrigger@@YGKPAX@Z: 0x75731a4d

?LsapTimerCallback@@YGXPAXE@Z: 0x75731ac1

?LsapDerefScavItem@@YGXPAU_LSAP_SCAVENGER_ITEM@@@Z: 0x75731b46

?LsapScavengerBreak@@YGKPAX@Z: 0x75731b77

_SafeAllocaFreeToHeap@4: 0x75733086

_LsapAllocateLsaHeap@4: 0x757330ab

(..)

A

Iterating Over Function’s Basic Blocks

• Still a little bit buggy

• Only enabled in IDAPython pulled from trunk

A

Iterating Over Function’s Basic Blocks

func = get_func(get_screen_ea())

fc = idaapi.FlowChart(func)

for block in fc:

print "%x - %x [%d]:" % (block.startEA, block.endEA, block.id)

for succ_block in block.succs():

print " %x - %x [%d]:" % (succ_block.startEA,
succ_block.endEA, succ_block.id)

for pred_block in block.preds():

print " %x - %x [%d]:" % (pred_block.startEA,
pred_block.endEA, pred_block.id)

A

Iterating Over Function’s Instructions

func = get_func(get_screen_ea())

for ea in Heads(func.startEA, func.endEA):

print “0x%08x: %s” % (ea, GetDisasm(ea))

• Output:
0x75789146: mov edi, edi

0x75789148: push ebp

0x75789149: mov ebp, esp

0x7578914b: lea eax, [ebp+arg_0]

0x7578914e: push eax

0x7578914f: call _LsapUnregisterAuditEvent@4

0x75789154: pop ebp

0x75789155: retn 4

A

Tying it all together

• Bad call scanner (I know sooo 2000 and late)

• Identifies dangerous calls to known bad APIs
i.e., strcpy, sprintf etc.

A

Tying it all together

• Finding PE Parsing routines:

for start in Functions(MinEA(), MaxEA()):
for ea in Heads(start, PrevAddr(get_func(start).endEA)):

disasm = GetDisasm(ea)
name = GetFunctionName(ea)

if disasm.lower().find("5a4d") != -1:
l = "%s => 0x%08x: %s\n" % (name, ea, disasm)

msg(l)

if disasm.lower().find("4550") != -1:
l = "%s => 0x%08x: %s\n" % (name, ea, disasm)
msg(l)

A

Tying it all together

• Reverser’s Cookbook methods

– find_path, find_all_paths

– find_instr, find_func

– enum_switches

– file_io, net_io

– …

A

Questions?

Debugging

A

Debugging Crashes

• When a crash occurs we are mostly concerned with…
– Faulting instruction

• Disassembly around faulting instruction (ub @eip in windbg)

– Register contents
• Pointers

– To code
– To data

• Values
– Simple data types
– Return values
– Lengths/Counters

– Call stack
• How we got here

– State of the heap and stack
• Verify heap integrity (!heap 0 –v)
• Veryify stack integrity (dd @esp ; !exchain)

A

Debugging Crashes (cont.)

• VM Debugging

– Allows you to snapshot an entire system

• This allows you to know ahead of time where things are
allocated

– Revert back to a good state

A

Clever Breakpoints

• Breakpoints are great for examining a program

– Can get an inside peak at what is going on

• Tracing! (check your log window)

– Break if loop counter == 0xFFFD

• Memory breakpoints

– When is a buffer first read from? Written to?

– Useful for tricks like hunting down the source of
an allocation

• VM debugging helps here

A

Conditional Breakpoints (WinDbg)

• Conditional Breakpoints

– Breakpoint is only executed when condition is
met:
• bp myprogram!SomeFunc+0x08 “j @eax = 0xFFFD '';'gc'"

– http://msdn.microsoft.com/en-us/library/cc267482.aspx

A

http://msdn.microsoft.com/en-us/library/cc267482.aspx
http://msdn.microsoft.com/en-us/library/cc267482.aspx
http://msdn.microsoft.com/en-us/library/cc267482.aspx

Conditional Breakpoints (OllyDbg)

• OllyDbg has a command line plugin

– Bp CreateFileA, STRING *esp+4+ == “TrollToll.exe”

A

Conditional Breakpoints (GDB)

• GDB standard *nix debugger (unfortunately)

– b *0x00401000 if $eax==5

A

Useful Debugging Tricks

• GFLAGS
– Page Heap (awesome)

• Can obscure vulnerabilities, though
– Pointer math

• Enables the debug heap, behaves differently

– User mode stack trace database
• Track sources of heap allocations

– Heap * checking
• Ensures heap integrity during heap operations

– Read up: http://technet.microsoft.com/en-
us/library/cc738763(WS.10).aspx

A

Useful Debugging Tricks

• WinDBG
– !heap

• Walk the heap (requires symbols)
• !heap 0 –v
• !heap –p –a 0xwhatever

– !exchain
• Lists the registered exception handles

– !analyze –v
• Analyzes the current crash, includes call stack, other useful info

– !exploitable
• Not as cool as it sounds

• ImmDbg
• Has it’s own !heap

A

Questions?

Hands On Experience:
GreenMan

Background

• GreenMan

– Compiled for Linux/Mac/Windows

– Vulnerable Application (sorry to kill the suspense)

– Listens on port 4959

– GreenMan has the following vulnerabilities:

• Integer overflow resulting in a heap overflow

• Stack overflow

• Format string

P

Background

• SweetDee.py

– Client for GreenMan

– sweetdee.py <host> <port> <opcode> <payload>

• Host – your ip OR ALL which sends a packet to the ip
range:

– 192.168.1.0-255

• Port – should be 4959 unless recompiled

• Opcode – which vulnerability do you want to trigger?

• Payload (optional) – used only in opcode 3

P

You need to…

• Download
– http://thunkers.net/~deft/misc/Reversing102.zip

• Please connect to Wireless Access Point
– VirusNetwork

• Disable your firewalls 

• Run the GreenMan application

• Attach your debugger of choice to GreenMan
– WinDBG: F6
– OllyDBG:File->Attach
– GDB: gdb `pidof GreenMan`

P

http://thunkers.net/~deft/misc/Reversing102.zip

Reversing the Binary

• Open up the GreenMan binary in IDA

– Windows/Linux/OS X versions will look different

• Check the Imports

– This will give you an idea of what functions it uses

– However, if it’s statically compiled (linux) it won’t
have Imports

• So check Names subview

– Check exports to find main(). Double-click it.

P

Reversing the Binary (Linux)

P

Reversing the Binary (Linux)

• Things to note

– Rather than push, gcc will
move the addresses directly
to the address of esp+X

A

Reversing the Binary (Linux)

• Things to note

– Rather than push, gcc will
move the addresses directly
to the address of esp+X

A

Reversing the Binary (Linux)

• Things to note

– Even though source code uses recv() and printf()
the compiler substitutes

A

Reversing the Binary (Linux)

A

Reversing the Binary (OS X)

• Things to note

– IDA identifies it as a MACH-O binary

– Code looks similar to linux binary

A

Reversing the Binary (OS X)

A

Reversing the Binary (Windows)

• Things to note

– Uses threads

– Symbol support (type information)

A

Reversing the Binary (Windows)

A

Reversing the Binary (Windows)

A

Reversing the Protocol

• Must identify where network program “recvs”
network input

– How the network input is manipulated or
understood (protocol parsing)

• Use cross references to identify network input points

P

Reversing the Protocol

• recv stores result in buffer

P

Reversing the Protocol

• recv stores result in buffer

• buffer is passed to Dispatch function

– Dispatch takes only one parameter

P

Reversing the Protocol

• Dispatch

– Copies the first four bytes from the buffer into a
separate buffer

P

Reversing the Protocol

• Dispatch

– Calls strtol on first four bytes of packet

• long int strtol(const char * str, char ** endptr, int base);
– Parses the C string str interpreting its content as an integral

number of the specified base, which is returned as a long
int value.

P

Reversing the Protocol

• Dispatch

– Recap:

• Takes recv’d buffer

• Parses out first four bytes

• Converts first four bytes to long int

• Then enters a switch of valid integers

P

Reversing the Protocol

• Dispatch

– Protocol accepts the following integers:

• 1, 2, 3
Converted integer

Valid integers

P

Opcode: 1

• Where do you want to set a breakpoint?

• Payload:
[opcode][size][string]

• Judging from disassembly, payload and crash
what do we suspect the vulnerability to be?

Crash…

• Where did it crash:

• Heap Related?

Crash…

• Where did it crash:

• What do our registers contain?

Crash…

• Check the call stack for hints

• Depending on heap state and frequency of
heap operations, different crashes can occur

Crash…

• On Windows, we can check the heap
integrity…

– !heap 0 -v

Crash…

Opcode: 2

• Payload:
[opcode] [string]

• Judging from disassembly, payload and crash
what do we suspect the vulnerability to be?

Crash…

• Where did it crash:

Crash…

• What do our registers contain?

Crash…

• What does our call stack look like

Opcode: 3

• Payload:
[opcode] [specific string]

• Judging from disassembly, payload and crash
what do we suspect the vulnerability to be?

Conclusion of Session II

Questions?

E-mail the mailing list if you have additional questions
We are subscribed as well

Alternatively
Our gmail usernames are aportnoy and petersilberman

Thanks!

